
Journal of Real-Time Image Processing manuscript No.
(will be inserted by the editor)

Erik Smistad · Frank Lindseth

Multigrid gradient vector flow computation on the GPU

the date of receipt and acceptance should be inserted later

Abstract Gradient vector flow (GVF) is a feature-
preserving spatial diffusion of image gradients. It was
introduced to overcome the limited capture range in tra-
ditional active contour segmentation. However, the orig-
inal iterative solver for GVF, using Euler’s method, con-
verges very slowly. Thus many iterations are needed to
achieve the desired capture range. Several groups have
investigated the use of graphic processing units (GPUs)
to accelerate the GVF computation. Still, this does not
reduce the number of iterations needed. Multigrid meth-
ods, on the other hand, have been shown to provide a
much better capture range using considerable less itera-
tions. However, non-GPU implementations of the multi-
grid method are not as fast as the Euler method when
executed on the GPU. In this paper, a novel GPU im-
plementation of a multigrid solver for GVF written in
OpenCL is presented. The results show that this imple-
mentation converges and provides a better capture range
about 2-5 times faster than the conventional iterative
GVF solver on the GPU.

Keywords Gradient Vector Flow · GPU · Multigrid

1 Introduction

Gradient vector flow (GVF) is a feature-preserving
spatial diffusion of image gradients. The GVF field is
defined as the vector field V, that minimizes the energy

Erik Smistad · Frank Lindseth
Dept. of Computer and Information Science
Norwegian University of Science and Technology
Sem Saelandsvei 7-9, NO-7491 Trondheim
Tlf.: +47 73594475
E-mail: smistad@idi.ntnu.no

Erik Smistad · Frank Lindseth
SINTEF Medical Technology

This is a preprint. The final publication is available at
Springer via http://dx.doi.org/10.1007/s11554-014-0466-2

Fig. 1: Example of GVF execution using Euler’s method.
The image to the left is the input image and the three next
images show the GVF vector field after 0, 10 and 400 itera-
tions. The top row shows the magnitude of the vector field
and the bottom row shows the vectors superimposed on a
zoomed area of the input image.

function E:

E(V) =

∫
µ|∇V(x)|2+|V(x)−V0(x)|2|V0(x)|2dx (1)

where V0 is the initial vector field. The first part of this
integrand |∇V(x)|, is the diffusion part that favors a vec-
tor field that is smooth. The second part |V(x)−V0(x)|,
on the other hand, is the feature-preserving part that
pushes the vector field to be similar to the initial vector
field. The last part |V0(x)| reduces the feature preser-
vation for weak edges so that they are smoothed out
instead. The parameter µ governs how much the vector
field should be smoothed. Thus µ should be increased if
there is a lot of noise. Also, note that the gradient oper-
ator ∇ is applied separately for each vector component.

Figure 1 depicts the process of the GVF algorithm.
The image to the left is the input image. Next, is the

2

initial vector field V0 and the next two images show the
vector field V after 10 and 400 iterations. The top row
shows the magnitude of the vectors fields while the bot-
tom row shows the vectors superimposed on a zoomed
area of the input image. The initial image shown top-left
is an image smoothed by convolution with a Gaussian.

The GVF algorithm was introduced by Xu and Prince
[19] as a new external force field for active contours (AC).
Also known as snakes or deformable models, AC are
curves that move in an image while trying to minimize
their energy and are used extensively for boundary de-
tection and segmentation. The original snake, introduced
by Kass et al. [12], has the problem of getting stuck in
boundary concavities and low capture range. The cap-
ture range is how far from the object’s border a snake
can be initialized and still converge to the border. The
GVF method is able to overcome both these problems.

After its introduction, the GVF algorithm has been
applied for several other image processing applications.
Bauer and Bischof [3] developed a novel approach to use
the GVF as a replacement for the scale-space framework
in Hessian based tube detection. Hassouna and Farag
[10] and Bauer and Bischof [4] used the GVF to extract
skeletons from objects. Ray and Acton [14] used GVF to
track leukocytes from intravital video microscopy. Guo
and Lu [8] argued that GVF combined with mutual in-
formation can improve multi-modal image registration.

Xu and Prince [19] showed that the GVF field can be
found by solving the Euler equation:

µ∇2V(x)− (V(x)−V0(x))|V0(x)|2 = 0 (2)

This can be done by treating the vector field V as a
function of time and using Euler’s method:

V(x, t+ 1) =V(x, t) + µ∇2V(x, t)−
(V(x, t)−V(x, 0))|V(x, 0)|2

(3)

Algorithm 1 shows how this is done numerically.

Algorithm 1 3D Gradient vector flow using Euler’s
method

Input: Initial vector field V0 and the constant µ.
V← V0

for a number of iterations do
for all voxels x do

L ← −6V(x) + V(x + 1, y, z) + V(x − 1, y, z) +
V(x, y+1, z)+V(x, y−1, z)+V(x, y, z+1)+V(x, y, z−1)

Vn(x)← V(x) + µL− (V(x)−V0(x))|V0(x)|2
end for
V← Vn

end for

Calculating the GVF field serially using this numerical
approach is slow due to the need for many iterations to
converge. However, since each pixel is calculated inde-
pendently of the other pixels, each pixel can be processed
in parallel with the same instructions for each iteration.

This data parallelism makes the GVF ideal for execu-
tion on graphic processing units (GPUs). The GPU is a
type of single instruction, multiple data (SIMD) proces-
sor. It can perform the same instruction on each element
in a dataset in parallel. GPUs achieve this with many
functional units (e.g. ALUs) that share control units.

Because of the simplicity and data parallelism of Eu-
ler’s method for solving GVF (see Algorithm 1), there
exist several GPU implementations of this method. Eid-
heim et al. [6], He and Kuester [11] and Zheng and Zhang
[20] all presented GPU implementations of GVF and ac-
tive contours for 2D images using shader languages. A
GPU implementation of 2D GVF written in CUDA was
done by Alvarado et al. [2]. In our previous work [16],
we presented a highly optimized GPU implementation
of GVF for both 2D and 3D images using OpenCL. This
implementation uses both texture memory and a 16-bit
storage format to reduce memory latency and has been
used for fast segmentation and centerline extraction of
tubular structures in medical images [15,17]

Han et al. [9] proposed an alternative numerical scheme
to Euler’s method using a multigrid method. Their re-
sults showed significant improvement in speed and qual-
ity.

There exist several implementations of multigrid meth-
ods on the GPU. Some examples are Bolz et al. [5] who
implemented a sparse matrix multigrid solver on the
GPU and Grossauer and Thomas [7] who implemented
a denoising filter and a solver for optical flow on the
GPU using multigrid methods. However, to our knowl-
edge, there are no published implementations on multi-
grid methods for GVF on the GPU.

In this paper, we present a parallel GPU implementa-
tion of GVF for 3D images using the numerical multigrid
scheme presented by Han et al. [9]. The implementation
is available online.

The next section describes the multigrid solver for
GVF and how it was implemented and optimized for
the GPU. The implementation was evaluated on several
large medical 3D datasets and execution time and av-
erage error are reported in the result section. Finally, a
discussion of the results and conclusions are presented.

2 Methods

2.1 Multigrid gradient vector flow

Throughout this article, a computational grid refers to
the current vector field V with a specific resolution. While
Euler’s method only work on one computational grid
with one specific resolution, multigrid (MG) solvers work
on several computational grids with different resolutions.
Thus MG methods are a type of multiresolution meth-
ods. The general idea of MG methods is to accelerate

http://github.com/smistad/GPU-Multigrid-Gradient-
Vector-Flow/

3

Fig. 2: The multigrid V-cycle with 1 levels.

the convergence by solving the same problem only on
a coarser computational grid and then use this solu-
tion when solving the finer grid. Thus this is a recursive
method and for each recursive call there are five steps:

1. Pre-smoothing: Smooth the current grid to remove
high frequency errors.

2. Restriction: Create a coarser grid of the current grid.
3. Run this method recursively on the coarser grid from

the previous step.
4. Correction: Prolongate/Interpolate the solution of the

previous step to the same resolution as the current
grid and use it to correct the current solution.

5. Post-smoothing: Smooth the current grid again.

This is called the V-cycle and is depicted in Figure 2.
In the next sections, these steps are explained in more
detail. Note that for each of these steps there are several
choices of methods and parameters. Han et al. [9] inves-
tigated which of these choices gave the best convergence
rate for GVF. Thus in this study, the same methods and
parameters have been used.

2.1.1 Smoothing

The purpose of the pre- and post-smoothing is to re-
duce high frequency errors. This is done using the red-
black Gauss-Seidel (RBGS) relaxation method. The ad-
vantage of using the RBGS method versus the default
lexiographic Gauss-Seidel method is that RBGS allows
half of the voxels in the grid to be computed in parallel.

Which is crucial for the GPU implementation. One im-
portant parameter in this step, is how many iterations
of smoothing will be performed.

In the rest of the article, the following notation will be
used. vl is the current solution for one component in the
GVF vector field V at resolution level l. rl is the resid-
ual of the current solution vl at resolution level l. The
vector x = [x, y, z], is the voxel position. The squared
magnitude of the initial vector field V0 is constant and
simplified to Sl(x) = |V0(x)|2l . Assuming isotropic spac-
ing h in the computational grid, the update equation for
the Gauss-Seidel method is as follows [9]:

L(x, y, z) = vl(x+ 1, y, z) + vl(x− 1, y, z) + vl(x, y + 1, z)

+ vl(x, y − 1, z) + vl(x, y, z + 1) + vl(x, y, z − 1)

vl(x, y, z) =
2µL(x, y, z)− 2h2l rl(x, y, z)

12µ+ h2l Sl(x)
(4)

The update equation is executed on the entire dataset at
each level and is done with two kernels as shown in Al-
gorithm 2. To accomplish the checkerboard (red-black)
pattern as shown in Figure 3, the Manhatten distance
from origo (x+ y + z) is first calculated. If the Manhat-
ten distance is even the voxel is red, and if it is odd the
voxel is black. The first kernel, GaussSeidelRed, cal-
culates the red voxels using Equation 4. Thus this kernel
only works on half the voxels in the dataset. The second
kernel, GaussSeidelBlack, copies the red voxels from
the previous kernel and computes the black voxels.

A double buffering mechanism is used here with the
datasets vread and vwrite. This is necessary because the
data is stored in textures which can only be read or writ-
ten to in a kernel. More details about the use of textures
can be found in the optimization section.

At the boundary of the image, the neighboring voxels
needed to calculate L in Equation 4 does not exist. It is
desirable to have a zero gradient at the boundary, be-
cause a gradient larger than zero at the boundary would
diffuse into the rest of the image giving an impression
of an edge at the boundary. This can have the effect of
forcing the active contours towards the image boundary.
There are several ways to implement a zero gradient at
the boundary. In this implementation, any voxel that is
on the boundary of the image will change its value to the
same as the voxel two steps inside the image as shown
in Figure 4. For example a voxel with coordinate x = 0
uses the value of the voxel with coordinate x = 2. Also,
a voxel with x = N − 1 uses the value of the voxel with
coordinate x = N − 3. The same applies for the y and z
coordinates. The reason for doing it this way is that the
calculations are simple.

2.1.2 Restriction

The restriction step downsamples the residual r at level
l to a coarser grid (level l + 1).

4

Fig. 3: Checkerboard pattern used in the red-black Gauss-
Seidel method to process half the voxels in parallel on the
GPU.

Fig. 4: Illustration of boundary conditions in the top left
corner of an image. Boundary pixels (green/dark) get the
same value as the pixels two steps inside the image (arrows).
This will create zero gradients at the white pixels because a
central difference scheme is used for the Laplace operator.

Algorithm 2 Parallel red-black Gauss-Seidel

function GaussSeidel(r, v, i, S, h)
for i times do

GaussSeidelRed(r, v, vt, S, h)
GaussSeidelBlack(r, vt, v, S, h)

end for
return v

end function

function GaussSeidelRed(r, vread, vwrite, S, h)
for each voxel (x, y, z) in parallel do

if x+ y + z is even then
Use Equation 4 to calculate v for voxel x, y, z

end if
end for

end function

function GaussSeidelBlack(r, vread, vwrite, S, h)
for each voxel (x, y, z) in parallel do

if x+ y + z is even then
Copy the red voxel from vread to vwrite

else
Use Equation 4 to calculate v for voxel x, y, z

end if
end for

end function

The residual is calculated using the current solution
vl and residual rl as [9]:

rl(x) = rl(x)−
(
µL(x)− 6vl(x)

h2l
− vl(x)Sl(x)

)
(5)

The restriction operator used in this implementation takes
the average of each 2x2x2 voxel cell and creates a grid
which is half the size in each dimension as shown in
Equation 6. The same operator is used when creating
the different levels of the squared magnitude of the ini-
tial vector field Sl.

rl+1(x, y, z) =
1

8
(rl(2x, 2y, 2z) + rl(2x+ 1, 2y, 2z)

+ rl(2x, 2y + 1, 2z) + rl(2x, 2y, 2z + 1)

+ rl(2x+ 1, 2y + 1, 2z) + rl(2x, 2y + 1, 2z + 1)

+ rl(2x+ 1, 2y, 2z + 1) + rl(2x+ 1, 2y + 1, 2z + 1))
(6)

If the grid size is 256x256x256 for level l, the next level
will have size 128x128x128. Usually, the size of the finest
grid (level l = 0), the actual image size, is not equal in
every dimension or a power of two for that matter. By
taking the largest dimension and rounding up towards
the closest number that is a power of 2 (see Equation 7),
the size of the next level can be determined.

A = 2dlog2(max(M,N,O))e−1 (7)

Then the size of level 1 would be AxAxA. Thus for an
input vector field of size 460x390x120 (level 0), level 1
would have a size of 256x256x256, and level 2 would have
a size of 128x128x128. This method leads to some waste
of space and processing, but gives a much simpler im-
plementation. The spacing of each level is calculated as
hl+1 = 2hl. The multigrid method will process grids from
level 0 to the coarsest level with the smallest possible
size, 2x2x2.

2.1.3 Prolongation

Prolongation is the opposite of restriction. Prolongation
resamples and increases the size of the grid. It is used
when correcting the current solution with a solution of
a coarser grid such that Correct(vl, vl+1)← vl +
Prolongate(vl+1). Bi- or trilinear interpolation may
be used as a prolongation operator, but according to Han
et al. [9] a simple nearest voxel method (Equation 8) give
a better convergence rate.

vl(x, y, z) =vl+1

(⌊x
2

⌋
,
⌊y

2

⌋
,
⌊z

2

⌋)
(8)

5

Fig. 5: The full multigrid algorithm with 4 levels.

2.1.4 The V-cycle

Putting all of this together we end up with Algorithm 3.
This algorithm needs 6 separate GPU kernels: Gauss-
SeidelRed, GaussSeidelBlack, Residual, Restrict,
Correct and InitializeToZero which simply initial-
izes a solution to zero.

The two constants b and c determines how many
times pre- and post-smoothing will be performed.

Algorithm 3 The V-cycle

function Vcycle(rl, vl, l, Sl, hl, b, c)
vl ← GaussSeidel(rl, vl, b, Sl, hl)
if l is NOT the coarsest grid level then

% Calculate residual of current solution vl
rl ← Residual(rl, vl)
rl+1 ← Restrict(rl)
% Initialize coarse solution to 0
vl+1 ← InitializeToZero
vl+1 ← Vcycle(rl+1, vl+1, l + 1, Sl+1, hl+1, b, c)
% Correction of the vl using the coarse solution
vl ← Correct(vl, vl+1)

end if
vl ← GaussSeidel(rl, vl, c, Sl, hl)
return vl

end function

2.1.5 The full multigrid algorithm

One MG scheme is to repeat the V-cycle until conver-
gence. However, faster convergence can be achieved with
the full MG algorithm (FMG) [9]. The FMG algorithm
is based on the MG V-cycle. However, instead of per-
forming a set of similar V-cycles, the FMG algorithm
starts with the coarsest grid and uses the solution for
this grid to get a good initialization of the next finer grid
(see Figure 5). This is done recursively using the func-
tion RecursiveFullMultigrid for all computational

grids as shown in Algorithm 4. The FMG algorithm can
also be repeated until convergence, the constant a deter-
mines how many times the FMG algorithm will be re-
peated. The function FullMultigrid is the entry point
of the entire method and takes in the parameters a, b and
c and the initial vector field V0. The FMG algorithm
needs one more additional GPU kernel and that is the
Prolongation kernel which implements Equation 8.
The other kernels, Restrict, Residual and Initial-
izeToZero, are the same as in the V-cycle algorithm.

Algorithm 4 The full multigrid algorithm

function RecursiveFullMultigrid(rl, l, b, c)
if l is the coarsest grid then

vl ← InitializeToZero
else

rl+1 ← Restrict(rl)
vl+1 ← RecursiveFullMultigrid(rl+1, l + 1, b, c)
vl ← Prolongate(vl+1)

end if
vl ← Vcycle(rl, vl, l, Sl, hl, b, c)
return vl

end function

function FullMultigrid(V0, a, b, c)
V← InitializeToZero
for a times do

for each component C ∈ [x, y, z] do
% Calculate initial residual
r ← Residual(−V0,C |V0,C |2,VC)
VC ← RecursiveFullMultigrid(r, 0, b, c)

end for
end for
return V

end function

2.2 GPU optimization

Accessing the off-chip global memory on a GPU is a very
time-consuming operation [1]. Since all of the kernels in
this implementation require many memory access oper-
ations and few arithmetic operations, the performance
of these kernels are memory-bound. Thus, optimization
of these kernels should focus on optimizing the memory
access. In this section, GPU memory optimization tech-
niques such as using the texture memory system and a
16-bit storage format are described.

2.2.1 Texture memory

The GPU has a specialized memory system for images,
called the texture system. It has this system because the
GPU is primarily made and used for fast rendering which
involves mapping images, often called textures, onto 3D
objects. The texture system specializes in fetching and
caching data from 2D and 3D textures [13,1]. The fetch
unit of the texture system is also able to perform inter-
polation and data type conversion in hardware. When

6

working with images and volumes, using the texture sys-
tem to store these structures can greatly improve perfor-
mance as shown in our previous work on GVF [16]. All
of the vector fields, residuals and squared magnitudes at
different levels are stored in textures.

2.2.2 16-bit storage format

Memory access can also be improved by reducing the
number of bytes transferred from global memory to the
chip. Floating point numbers are usually represented us-
ing 32 bits and the IEEE 754 standard. However, if the
floating point numbers are normalized between 0.0 and
1.0 or -1.0 and 1.0 a different format can be used. Most
GPU’s texture system supports normalized 8- and 16-
bit integers. With this format, the data is stored as 8- or
16-bit integers in the textures. However, when the data
is requested, the texture fetch unit converts the inte-
ger to a 32-bit floating point number with a normalized
range. This reduces accuracy, and may not be sufficient
for all applications. In our previous work on GPU-based
GVF using Euler’s method, the results showed that 8-bit
was too inaccurate for any practical use [16]. Also, our
previous work on applications such as segmentation and
centerline extraction of airways and blood vessels using
GVF has shown that 16-bit gave just as good results as
32-bit and increased the speed considerably on large im-
ages [17,18]. The 16-bit storage format also halves the
global memory usage, thus allowing much larger volumes
to reside completely in the GPU memory.

2.2.3 Work-group size

Threads are executed on the GPU in groups. AMD calls
these units of execution wavefronts while NVIDIA calls
them warps [1,13]. The units are executed atomically
and have at the time of writing the size of 64 (AMD)
or 32 (NVIDIA) threads. The threads are also grouped
in software. In OpenCL these groups are called work-
groups, and in CUDA they are called thread-blocks. If
the work-group sizes are not a multiple of the wave-
front/warp size, some of the GPUs thread processors will
be idle for each work-group that is executed. Also, there
is a maximum number of threads that can reside in a
work-group. On AMD GPUs, this limit is currently 256
and on NVIDIA up to 1024.

When a kernel is scheduled on the GPU using OpenCL,
the kernel is executed on a global grid. The grid size has
to be dividable by the work-group size. Thus if an image
of size 512x512x256 is to be processed with one kernel
per voxel, a 3D global execution grid is used with the
same size of the image. A possible work-group size is then
4x4x4 because 512 and 256 is dividable by 4, and 4x4x4
= 64 threads which is a multiple of the wavefront/warp
sizes and is below the maximum limit.

In this implementation a work-group size of 4x4x4
was used. However, the optimal work-group size can vary

from different GPUs. Volumes that have a dimension size
that is not dividable by 4 are cropped.

3 Results

The overall goal of the proposed GVF implementation
is to achieve a low error as fast as possible. Thus the
GVF error and execution time were measured at differ-
ent number of iterations. This was done on three dif-
ferent datasets using a modern AMD Radeon HD7970
GPU with 3GB memory. The setup was running Ubuntu
12.04, AMD Catalyst 12.11 graphic drivers and AMD
APP SDK 2.9. The parameters used in all experiments
are µ = 0.1, a = 1, b = 2 and c = 1. Recall that the
constant a is the number of times the FMG algorithm is
repeated, and b and c are the number of pre- and post-
smoothing iterations. These constants were determined
through experimentation. The gradient of the input im-
age smoothed with a Gaussian filter with standard de-
viation σ = 0.5 was used as the input vector field V0 in
all experiments.

The graphs in Figure 6 show the average error ε ver-
sus time for both the Euler [16] and multigrid method
on the GPU. These measurements were done on three
different datasets with varying sizes using both 16- and
32-bit storage. One large volume of size 512x512x512,
one medium volume of size 512x512x256 and one small
volume of size 256x256x256. All of the volumes are clin-
ical computed tomography (CT) volumes. The average
error ε is calculated using Equation 2 over all N voxels:

ε =
1

N

∑
x

∣∣µ∇2V(x)− (V(x)−V0(x))|V0(x)|2
∣∣ (9)

From these graphs, it is evident that the MG GPU method
converges faster than the Euler GPU method for all three
datasets. However, it was not possible to process the
largest volume (512x512x512) with either method using
32-bit storage as there was not enough memory on the
GPU to do this. Thus only results for 16-bit storage are
included in the graph for this volume.

Figure 7 shows the increased capture range with the
MG method versus the Euler method [16] when run on
a CT thorax image using the same amount of execution
time. The figure shows images of the magnitude of the
GVF vector field |V| using the same intensity transfor-
mation for visual comparison.

Table 1 shows the average runtime on different datasets
for the two GPU implementations and a serial C++
CPU implementation of Euler’s method. The datasets
were processed 10 times with Euler’s method first using
a fixed number of iterations and then the multigrid GPU
implementation was executed for as many iterations as
needed to reach the same error ε or lower as the Euler

http://github.com/smistad/Gradient-Vector-Flow/

7

Fig. 6: Average error ε over time in ms for both the Euler and multigrid GPU implementations with 32-and 16-bit floating
point storage formats and datasets of different sizes. Top: 512x512x512. Middle: 512x512x256. Bottom: 256x256x256.

8

Fig. 7: Magnitude of the GVF vector field after the same amount of execution time displayed using the same intensity
transformation. Left: Input image (Thorax CT). Middle: Euler GPU GVF [16] (512 iterations). Right: Multigrid GPU
GVF (15 iterations). Note the larger capture range with the multigrid method.

Fig. 8: Segmentation and centerline extraction of an abdom-
inal aortic aneurysm using the proposed multigrid GVF im-
plementation [18].

method. The results show that the multigrid GPU imple-
mentation is several times (1.9-5.1) faster than the Euler
GPU implementation.

4 Discussion

Defining N as the size of the largest dimension of an
image, the Euler method need at least N iterations to
diffuse gradients to all voxels of the image. Han et al. [9]
defined this as a rule of thumb of how many iterations
should be used with this method. This is due to the dis-
crete Laplace operator used which only uses neighbor
voxels. Thus, the gradients can only diffuse one voxel
at a time. Multigrid methods, on the other hand, can
diffuse gradients across the image in a single iteration.
This is why multigrid methods for GVF achieve a greater
capture range and thus lower error faster. In the experi-
ment depicted in Figure 7, both methods were run for the
same amount of time and the result is that the multigrid
method ends up with a higher capture range. Although
multigrid methods need fewer iterations, the multigrid
iterations are much more time consuming as they do a
lot more work in each iteration.

In our previous work [18], the proposed MG GVF im-
plementation was used in the segmentation and center-
line extraction of abdominal aortic aneurysms (AAAs)
(see Figure 8). In this work, GVF is used to diffuse the
image gradients from the edge of the blood vessels to the
center. Because AAAs often involve very large blood ves-
sels, the gradients have to diffuse a long way and thus
benefit a lot from the MG GPU implementation. Us-
ing the proposed implementation, 6 iterations and 1-2
seconds of processing were sufficient. While over 10,000
iterations and several minutes of processing were needed
to achieve the same result with the Euler GPU imple-
mentation using the same GPU.

From the graphs in Figure 6 it is clear that the amount
of speedup depends on what the target average error is
and the size of the dataset. The speedup may also vary a
lot for different types of GPUs. These graphs also show

9

Dataset Euler Euler CPU Euler GPU Multigrid GPU Multigrid Speedup
size iterations 32-bit 16-bit / 32-bit 16-bit / 32-bit iterations needed 16-bit / 32-bit
512x512x512 512 3085 secs 7.80 / N/A secs 2.17 / N/A secs 4 3.6 / N/A
512x512x256 512 1531 secs 3.88 / 10.16 secs 1.4 / 1.99 secs 4 2.8 / 5.1
256x256x256 256 188 secs 0.46 / 1.10 secs 0.24 / 0.33 secs 3 1.9 / 3.3
256x256x128 256 97 secs 0.23 / 0.54 secs 0.12 / 0.17 secs 2 1.9 / 3.2

Table 1: Average runtime for three different GVF implementations: One serial CPU and one GPU implementation of the
Euler method, and the proposed multigrid GPU implementation. The Euler method is run with a specific number of iterations
for each dataset, and the multigrid method is run for as many iterations needed to reach the same error ε or lower.

that it is possible to get a lower average error with 32-bit
than with 16-bit storage format.

Note that the multigrid method processes one com-
ponent of the vector field at a time. This is less efficient
than processing all components at the same time as with
the Euler method in Algorithm 1. The reason for process-
ing one component at a time in this multigrid implemen-
tation is to reduce memory usage. Thus, if a GPU had
more memory, all components could be processed in par-
allel and the method would probably be even faster. As
GPUs get more and more memory every year, this will
most likely be possible in the near future.

5 Conclusions

In this paper, a GPU implementation of a multigrid
solver for gradient vector flow was presented. The results
showed that this multigrid implementation was able to
achieve a higher capture range with a lower average error
faster than a highly optimized GPU implementation of
the traditional Euler’s method for calculating the gradi-
ent vector flow.

References

1. Advanced Micro Devices. AMD Acceler-
ated Parallel Processing OpenCL Program-
ming Guide. Technical Report November, 2013.
http://developer.amd.com/wordpress/media/2013/07/
AMD Accelerated Parallel Processing OpenCL
Programming Guide-rev-2.7.pdf
Last accessed 8. August 2013.

2. Rigo Alvarado, Juan J. Tapia, and Julio C. Rolón.
Medical image segmentation with deformable models on
graphics processing units. The Journal of Supercomput-
ing, 68(1):339–364, December 2013.

3. Christian Bauer and Horst Bischof. A novel approach
for detection of tubular objects and its application to
medical image analysis. In Proceedings of the 30th
DAGM Symposium on Pattern Recognition, pages 163–
172. Springer, 2008.

4. Christian Bauer and Horst Bischof. Extracting curve
skeletons from gray value images for virtual endoscopy.
In Proceedings of the 4th International Workshop on
Medical Imaging and Augmented Reality, pages 393–402.
Springer, 2008.

5. Jeff Bolz, I Farmer, E Grinspun, and P Schröder. Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid. ACM Transactions on Graphics (TOG) - Pro-
ceedings of ACM SIGGRAPH 2003, 22(3):917–924, 2003.

6. O.C. Eidheim, J. Skjermo, and L. Aurdal. Real-time
analysis of ultrasound images using GPU. International
Congress Series, 1281:284–289, May 2005.

7. Harald Grossauer and Peter Thoman. GPU-based multi-
grid: Real-time performance in high resolution nonlinear
image processing. Computer Vision Systems, 5008:141–
150, 2008.

8. Yujun Guo and Cheng-chang Lu. Multi-modality Image
Registration Using Mutual Information Based on Gra-
dient Vector Flow. In 18th International Conference
on Pattern Recognition (ICPR’06), pages 697–700. Ieee,
2006.

9. X Han, C Xu, and J.L. Prince. Fast numerical scheme
for gradient vector flow computation using a multigrid
method. Image Processing, IET, 1(1):48–55, 2007.

10. M.S. Hassouna and A.A. Farag. On the extraction of
curve skeletons using gradient vector flow. In IEEE 11th
International Conference on Computer Vision, pages 1–
8. IEEE, 2007.

11. Zhiyu He and Falko Kuester. GPU-Based Active Contour
Segmentation Using Gradient Vector Flow. In Advances
in Visual Computing, pages 191–201, 2006.

12. Michael Kass, Andrew Witkin, and Demetri Terzopoulos.
Snakes: Active contour models. International Journal of
Computer Vision, 1(4):321–331, January 1988.

13. NVIDIA. OpenCL Best Practices Guide. Technical re-
port, 2010. http://www.nvidia.com/content/cudazone/
CUDABrowser/downloads/papers/
NVIDIA OpenCL BestPracticesGuide.pdf
Last accessed 8. August 2013.

14. Nilanjan Ray and Scott T Acton. Motion gradient vector
flow: an external force for tracking rolling leukocytes with
shape and size constrained active contours. IEEE trans-
actions on medical imaging, 23(12):1466–78, December
2004.

15. Erik Smistad, Anne C. Elster, and Frank Lindseth. GPU-
Based Airway Segmentation and Centerline Extraction
for Image Guided Bronchoscopy. In Norsk informatikkon-
feranse, pages 129–140. Akademika forlag, 2012.

16. Erik Smistad, Anne C. Elster, and Frank Lindseth. Real-
time gradient vector flow on GPUs using OpenCL. Jour-
nal of Real-Time Image Processing, pages 1–8, 2012.

17. Erik Smistad, Anne C. Elster, and Frank Lindseth. GPU
accelerated segmentation and centerline extraction of
tubular structures from medical images. International
Journal of Computer Assisted Radiology and Surgery,
9(4):561–575, 2014.

18. Erik Smistad and Frank Lindseth. A New Tube Detec-
tion Filter for Abdominal Aortic Aneurysms. In Proceed-
ings of MICCAI 2014 Workshop on Abdominal Imaging:
Computational and Clinical Applications, 2014.

19. Chenyang Xu and J.L. Prince. Snakes, shapes, and gradi-
ent vector flow. IEEE Transactions on Image Processing,
7(3):359–369, 1998.

20. Zuoyong Zheng and Ruixia Zhang. A Fast GVF Snake
Algorithm on the GPU. Research Journal of Applied
Sciences, Engineering and Technology, 4(24):5565–5571,
2012.

