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Abstract The Gradient Vector Flow (GVF) is a feature-
preserving spatial diffusion of gradients. It is used exten-
sively in several image segmentation and skeletonization
algorithms. Calculating the GVF is slow as many iter-
ations are needed to reach convergence. However, each
pixel or voxel can be processed in parallel for each iter-
ation. This makes GVF ideal for execution on Graphic
Processing Units (GPUs). In this paper, we present a
highly optimized parallel GPU implementation of GVF
written in OpenCL. We have investigated memory ac-
cess optimization for GPUs, such as using texture mem-
ory, shared memory and a compressed storage format.
Our results show that this algorithm really benefits from
using the texture memory and the compressed storage
format on the GPU. Shared memory, on the other hand,
makes the calculations slower with or without the other
optimizations because of an increased kernel complexity
and synchronization. With these optimizations our im-
plementation can process 2D images of large sizes (5122)
in real-time and 3D images (2563) using only a few sec-
onds on modern GPUs.

Keywords Gradient Vector Flow · GPU · OpenCL

1 Introduction

The Gradient Vector Flow (GVF) is a feature-preserving
spatial diffusion of gradients. The GVF field is defined
as the vector field V, that minimizes the energy function
E:

E(V) =

∫

µ|∇V(x)|2 + |V0(x)|
2|V(x)−V0(x)|

2dx (1)
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Fig. 1 Example of GVF execution. From left to right: Top:
1) Smoothed image. 2) Magnitude of image gradients V0 3)
Magnitude of GVF after 10 iterations, 4) Magnitude of GVF
after 400 iterations. Bottom: 1)Zoomed area of smoothed
image 2, 3 and 4) Image gradients superimposed on zoomed
image after 0, 10 and 400 iterations.

where V0 is the initial vector field.
The GVF was introduced by Xu and Prince [11] as

a new external force field for active contours (AC). Also
known as snakes or deformable models, AC are curves
that move in an image while trying to minimize its en-
ergy and are used extensively for boundary detection and
segmentation. The traditional snake introduced by Kass
et al. [8] has the problem of getting stuck in boundary
concavities and low capture range. The GVF snake can
deal with these problems.

Fig. 1 depicts the GVF when used for Active Con-
tours. The initial image shown top-right is an image
smoothed by convolution with a Gaussian. Next is the
initial vector field V0 displayed using vector magnitude
in the top row and the vectors in a zoomed region below.

This is a preprint. The final publication is available at
link.springer.com.
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The next column shows the GVF field after 10 iterations
of diffusion and the last column 400 iterations.

After its introduction, the GVF has been applied on
several other image processing applications. Bauer and
Bischof [2] developed a novel approach to use the GVF
as a replacement for the scale-space framework in Hes-
sian based tube detection. Hassouna and Farag [6] and
Bauer and Bischof [3] used the GVF to extract skeletons
from objects. Ray and Acton [10] used GVF to track
leukocytes from intravital video microscopy. Guo and Lu
[4] argued that GVF combined with Mutual Information
can improve multi-modal image registration.

Xu and Prince [11] showed that the GVF field can be
found by solving the Euler equation:

µ∇2V(x)− (V(x)−V0(x))|V0(x)|
2 = 0 (2)

This is done by treating the vector field V as a func-
tion of time. Calculating the GVF field serially using this
numerical approach is slow due to the need for many it-
erations to reach convergence. However, since each pixel
is calculated independently of the other pixels, each pixel
can be processed in parallel with the exact same in-
structions for each iteration. This data parallelism makes
the GVF ideal for running on Graphic Processing Units
(GPUs). GPUs enable execution of the same instructions
on many different data elements in parallel.

He and Kuester [7] presented a GPU implementation
of GVF and Active Contours using OpenGL Shading
Language (GLSL). They reported that their GPU im-
plementation was up to 4 times faster than a CPU im-
plementation. Their implementation was for 2D images
only and used the texture memory system to speed up
data retrieval. Performance result for only one NVIDIA
GPU was presented. Also, Han et al. [5] proposed an-
other serial numerical scheme for GVF using a multigrid
method. Their results showed significant improvement in
speed.

In this paper, we present an optimized parallel GVF
implementation written in OpenCL. OpenCL is a new
cross-platform framework for writing applications that
can run on heterogeneous systems. In contrast to the
work of He and Kuester [7], we investigate three differ-
ent memory optimization techniques for GPUs instead
of just using the texture memory. We also discuss 3-
dimensional GVF and show results for both GPUs and
multi-core CPUs from different manufacturers.

In the next section, we show how GVF can be imple-
mented in parallel and note that the algorithm is mem-
ory intensive. We also present three memory usage op-
timizations for GPUs: texture memory, shared memory
and a 16-bit floating point data type for storage. Section
3 presents performance results for each optimization in
terms of both speed and memory usage. An analysis of
the accuracy of the 16-bit floating point data type is
also conducted. Section 4 provides a discussion of the
presented results and the last section conclusions.

2 GPU Implementation

The parallel version of the numerical implementation of
GVF by Xu and Prince [11] is given in Alg. 1 and for 3D
in Alg. 2. The Laplacian ∇2V(x) is calculated using a fi-
nite difference method. On the boundaries of the image,
some of the neighboring points required to calculate the
Laplacian, will not exist. This can be solved by expand-
ing the image with 1 pixel in all directions and have the
same vector on the border as the third outermost pixel
as depicted in Fig. 2. The gradient at the original border
will then be 0. In practice, this is done by swapping the
x, y or z components in the read address to 2 if it is 0 and
to M-2 if it is M, where M is the size of that dimension.

Algorithm 1 Parallel 2D Gradient Vector Flow

for all points x in parallel do
laplacian← −4V(x)+V(x+1, y)+V(x−1, y)+V(x, y+
1) +V(x, y − 1)
V(x)← V(x) + µ∗ laplacian −(V(x)−V0(x))|V0(x)|

2

end for

Algorithm 2 Parallel 3D Gradient Vector Flow

for all points x in parallel do
laplacian ← −6V(x) +V(x+ 1, y, z) +V(x− 1, y, z) +
V(x, y+1, z)+V(x, y−1, z)+V(x, y, z+1)+V(x, y, z−1)
V(x)← V(x) + µ∗ laplacian −(V(x)−V0(x))|V0(x)|

2

end for

From these pseudocodes, we can see that calculating
the GVF needs 6 global memory accesses for 2D and 8
for 3D and about 20 ALU operations. The GVF com-
putation is memory-bound because global memory ac-
cess can have a latency of several hundred clock cycles
while the ALU operations are only a small fraction of this
[1]. Thus, in this project, we have focused on optimizing
memory access and storage.

The unoptimized GPU implementation uses regular
global memory with a 32-bit floating point storage for-
mat. In this article, we explore using texture memory as
an alternative to global memory as well as shared mem-
ory in combination with texture and global memory. We
also use a compressed 16-bit floating point storage for-
mat with each of these 4 memory combinations as an
alternative to the default 32-bit format. Thus in total,
we test 8 different memory optimization combinations
on the GPU.

2.1 Texture memory

The default memory on GPUs is called global memory.
This memory is not always cached (for AMD GPUs,
global memory caching has to be enabled explicitly).
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Fig. 2 The top left corner of an image. The arrows indicate
the values the boundary pixels use.

When caching is enabled, it only has linear spatial lo-
cality. Most modern GPUs also have a separate texture
memory system. Textures are 1D, 2D or 3D structures
that can be addressed based on coordinates. GPUs have
this texture memory system because GPUs are primarily
used for 3D applications where textures are mapped to
3D objects to create a more realistic 3D scene. The tex-
tures are stored off-chip, but are cached and have spatial
locality in multiple dimensions. When working with im-
ages and volumes this cache with 2D/3D spatial locality
can increase cache hits.

In the GVF calculations, there are two 2D/3D struc-
tures: the GVF fieldV and the initial vector fieldV0. We
optimize our implementation by putting both of these
data structures in textures. In OpenCL, textures are
called images, and an image bound to a kernel can only
be either read or written to. This is a limitation needed
to assure cache coherency. Since the GVF vector field V

has to be both read and written, we have used a double
buffering mechanism.

By creating two textures for the GVF field V, we use
one texture for writing and one for reading, and after
each iteration we swap the textures in the arguments to
the kernel.

The handling of the boundaries as depicted in Fig. 2
can be handled automatically by the texture system us-
ing the addressing flag ADDRESS CLAMP TO EDGE.
With this flag set, pixels requested outside of the texture
will use the pixel value closest to the request pixel.

In OpenCL, writing to a 3D texture is an optional ex-
tension called cl khr 3d image writes. AMD supports it
while NVIDIA does not. To support 3D GVF calculation
on NVIDIA GPUs we created a separate kernel for these
devices that uses global memory instead of textures for
V. Since global memory only have linear spatial cache
locality, this is expected to reduce the number of cache
hits.

Fig. 3 The input image is divided into several work-groups.
The green/dark area is the part of the work-group that is
calculated and the box around is the frame where only data
is loaded.

2.2 Shared Memory

Shared memory is an on-chip memory that is shared
among all work-items in a work-group. This memory
is reported by GPU manufacturers to be more than 10
times faster than global memory which is off-chip ([1],[9]).
It is generally beneficial to use shared memory when sev-
eral work-items need the same data from global memory
as their neighboring work-items.

When calculating the Laplacian, ∇2V(x), the data
from the 4 (or 6 for 3D) closest neighboring pixels are
needed. If N is the total number of pixels, there will
be 5N global memory accesses to V in total because
each pixel is requested 5 times. By using shared memory
the number of global memory accesses can be reduced
significantly.

The input image is divided into a set of work-groups
as shown in Fig. 3. Each work-group process one tile of
the input image and allocates a block of shared mem-
ory with the same size as the work-group. Each work-
item in a work-group loads the pixel value from global
memory and stores it in shared memory. As the work-
items on the edges of the work-group will not have all
their neighbor’s data in shared memory, these work-items
will not do calculations, only load data. These pixels are
called the work-group’s frame and are calculated by their
neighboring work-groups. This causes some overhead in
terms of redundant global memory accesses and work-
items that are idle, but this is very small compared to
the overhead of 5N global memory accesses to V.

Synchronization is necessary after writing to the shared
memory, because all work-items in a work-group are not
executed simultaneously (if a work-group is above a cer-
tain size). Work-items in a work-group can synchronize
using a barrier in the shared memory.

The shared memory is divided into several banks usu-
ally 16 or 32. Memory requests to different banks can
be served in parallel while memory requests to the same
bank has to be serialized. Requests to the same bank in a
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clock cycle is called a bank conflict. These bank conflicts
can be avoided with a sequential access pattern.

2.3 16-bit float storage format

Memory access can also be improved by reducing the
number of bytes transferred from global memory to the
chip. The most common way to store a floating point
number on a computer, at present time, is by using 32
bits with the IEEE 754 standard. However, most GPUs
also support a texture storage format called normalized
16-bit integer. With this format, the data is stored as 16-
bit integers (shorts) in textures, but when it is requested,
the texture fetch unit converts the 16-bit integer to a 32-
bit floating point number with a normalized range from
-1.0 to 1.0. This reduces accuracy, and may not be suf-
ficient for all applications. Due to the reduced accuracy,
the 16-bit storage format is made optional in our im-
plementation. This storage format also halves the global
memory usage, thus allowing much larger 3D volumes to
reside completely in the GPU memory.

2.4 Work-group sizes

Work-items are executed on the GPU in groups. AMD
calls these units of execution wavefronts while NVIDIA
calls them warps. The units are executed atomically and
has at the time of writing the size of 32 or 64 work-items.
If the work-group sizes are not a multiple of this size,
some of the GPUs stream processors will be idle for each
work-group that is executed. There is also a maximum
number of many work-items that can exists in one work-
group. On AMD GPUs, this limit is currently 256 and on
NVIDIA up to 1024. In conjunction with shared memory,
we want to maximize the size of the work-group minus
the frame, given this limit. For 2D, this is maximum
when the work-group is 16x16 and for 3D, 8x8x4. E.g.
an image of size 512x512 would give 32x32 work-groups
of size 16x16. Also, in OpenCL, each dimension has to be
dividable by the work group-size. Thus, we pad the data
so that the size is dividable by the highest possible work-
group. This avoids idle threads and branch divergence
while keeping a large work-group size.

3 Results

3.1 Speed

The speed of our implementation was measured using
OpenCL timers. Fig. 4 shows the average execution time
of one iteration on an image of size 512x512 with differ-
ent combinations of global, texture and shared memory
as well as 32-bit and 16-bit storage formats. This figure
clearly shows that using the texture memory is faster

Fig. 4 Average execution time for one iteration of a 512x512
image measured in milliseconds using OpenCL timers with
both 32-bit and 16-bit storage format and different combi-
nations of using regular global memory, texture memory and
shared memory.

Fig. 5 Average execution time for 512 iterations of images of
different sizes using OpenCL timers with both 32 and 16-bit
storage format. Note: The execution time difference between
32 and 16-bit storage format increases with the size of the
images.

than using regular global memory. Also, it illustrates
that utilizing shared memory slows down the computa-
tion and that the 16-bit storage format is only benefi-
cial when used together with the texture memory. Fig.
5 shows the average total execution time for images of
different sizes for both 32 and 16-bit. In this figure, we
notice that as the image size increases, the execution
time difference also increases. All of these tests were run
on an AMD Radeon HD5870 with 1GB of memory.

Tables 1 and 2 includes the average execution time
measured both on 2D and 3D and on several different
GPUs and multi-core CPUs. For the GPUs only the tex-
ture memory with the 16-bit storage format was used.
For the CPUs the same version was used, but with 32-bit
instead. From these two tables, we observe two things:
1) Execution on GPUs is much faster than on CPUs. 2)
While NVIDIAs GPUs are comparable to AMDs GPUs
on the 2D dataset in terms of speed, NVIDIAs GPUs
perform much worse on the 3D dataset.
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Processor One iteration All iterations
AMD 5870 0.035 ms 28 ms

AMD Mobile 5830 0.147 ms 77 ms
NVIDIA Quado FX5800 0.104 ms 66 ms

NVIDIA Tesla c2070 0.077 ms 41 ms
Intel i5 750 1.485 ms 851 ms
Intel i7 720 2.344 ms 1550 ms

Table 1 Average execution speeds for a 2D image of size
512x512 run for 512 iterations. The first 4 processors are
GPUs, while the rest are multi-core CPUs.

Processor One iteration All iterations
AMD 5870 4.501 ms 1124 ms

AMD Mobile 5830 20.739 ms 5129 ms
NVIDIA Quadro FX5800 105.631 ms 27172 ms

NVIDIA Tesla c2070 27.989 ms 7151 ms
Intel i5 750 310.846 ms 92591 ms
Intel i7 720 378.876 ms 106747 ms

Table 2 Average execution speeds for a 3D volume of size
2563 run for 256 iterations. The first 4 processors are GPUs,
while the rest are multi-core CPUs.

Fig. 6 Memory usage in MBs versus size of image. Dimen-
sion size x on the x axis is the size of one of the dimensions
so that total number of pixels is x2

3.2 Memory usage

Global synchronization is needed in each iteration when
calculating GVF in parallel. Because global synchroniza-
tion is not possible inside a kernel, a double buffering
mechanism is needed. This means that two copies of the
vector field V is needed in addition to the initial vector
field V0. The GPU implementation needs 2 vector com-
ponents (x and y) * 3 vector fields * 32 bits = 24 bytes
per pixel and 36 bytes per voxel for 3D volumes, because
of the additional z component. On the other hand, when
using a 16-bit float storage format, the memory usage
is halved. As an example a volume of size 5123 would
consume 4.5 GB with the 32-bit data type and only 2.25
GB with the 16-bit data type. Figures 6 and 7 graphs
the memory usage for this implementation for images
and volumes for both 32- and 16-bit. Both figures depict
the fact that the difference in memory usage increases as
the dataset size increases.

Fig. 7 Memory usage in MBs versus size of volume. Dimen-
sion size x on the x axis is the size of one of the dimensions
so that total number of voxels is x3

Merror θerror
Average 0.00078 0.55
Variance 4.29e-7 0.59

Maximum 0.00377 3.14
Minimum 8.92e-10 0

Table 3 Relative error of vector magnitude M and angle θ
from 32-bit to 16-bit floating point storage format. Calculated
using Eq. 3 and 4 on the image in Fig. 8. Angles are in radians

Fig. 8 The 512x512 MRI Brain scan image the relative error
measurements have been run on.

3.3 Relative accuracy

We measured the relative error between a 32-bit and a
16-bit floating point data type on the final GVF vector
field of the 512x512 image shown in Fig. 8. This was
done by calculating the GVF for each data type on the
same image. Relative error measures for both the magni-
tude and angle were calculated as shown in Eq. 3 and 4.
From these equations, the average, variance, maximum
and minimum were calculated for all pixels x and col-
lected in table 3.

Merror = ||V16bit(x)| − |V32bit(x)|| (3)

θerror = cos−1

(

V16bit(x) ·V32bit(x)

|V16bit(x)||V32bit(x)|

)

(4)
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Fig. 9 Normalized GVF vector field, run with the same num-
ber of iterations. The top is with 32-bit storage format and
the bottom is 16-bit. These two images clearly show the re-
duced capture range when using 16-bit.

4 Discussion

4.1 Speed

Fig. 4 shows that introducing shared memory actually
makes the calculations slower. The reason for this is
threefold: the code is more complex, requires explicit
work-group synchronization and more threads/work-items
are needed. Also, we notice that using the texture mem-
ory on the GPU is much faster than using the global
memory, which is due to the 2D/3D caching.

This figure further shows that using the 16-bit storage
format without textures is slower than using the 32-bit
storage format. When the 16-bit format is used in con-

junction with textures on GPUs all the data type con-
versions are done in hardware in the texture fetch units
which is much faster than doing the conversion in the
code. With CPUs using 32 bits is faster than 16 bits be-
cause although the CPU supports texture structures in
OpenCL, the CPU does not have dedicated texture fetch
units that can do the data type conversion in hardware
as GPUs do.

Also, we noticed from tables 1 and 2 that NVIDIAs
GPUs performed much worse on the 3D dataset than
AMDs GPUs. The reason for this is that NVIDIA does
not support writing to 3D textures in their OpenCL im-
plementation. Thus, global memory had to be used. This
memory, as we have explained earlier, is much slower
than the texture memory.

Fig. 5 illustrates that the difference in execution time
between using 32- and 16-bit storage formats increases
as the image size increases. Thus the performance gain
for 16-bit is biggest for large images and volumes, while
for very small images it is almost insignificant.

4.2 Memory usage

From the graph in Fig. 6, we can see that processing 2D
images of typical sizes is no problem with modern GPUs
that have 1GB memory and more. For 3D volumes a 1GB
graphics card would manage to process a dataset, with-
out any additional PCI express data transfer, of about
3003 and 3803 voxels for 32-bit and 16-bit data types
respectively.

4.3 Relative accuracy

Relative accuracy tests were performed to measure the
error by using the 16-bit storage format versus 32-bit.
As seen in table 3 these tests showed that there was very
little error in magnitude, but on average around 30 de-
grees angle error. The high angle errors was found to only
be present for the very short vectors. In fact, the max-
imum magnitude of all vectors with angle error above
0.1 was 9.15 · 10−4 on the 512x512 MRI brain scan im-
age. The size of the angle error generally increases when
the vector length decreases. Thus, this angle error may
not be problematic for most applications. For instance,
very short vectors will have very little pulling force on a
snake.

Still, the capture range of using the 16-bit format is
lower than 32-bit as seen in Fig. 9 where the resulting
vector field has been normalized. Thus, the 16-bit storage
format may not be sufficient for all applications.

5 Conclusions

In this paper, we presented a highly optimized parallel
GPU implementation of Gradient Vector Flow written
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in OpenCL. Our implementation enables real-time exe-
cution of GVF for images of sizes up to 5122 on modern
GPUs. Since it is written in OpenCL, it can also run
efficiently on multi-core CPUs. We investigated three
different memory optimizations for GPUs. Our results
show that using the texture memory with the 16-bit com-
pressed floating point storage format and without shared
memory is fastest on GPUs and can double the perfor-
mance compared to an unoptimized GPU implementa-
tion. Relative accuracy measurements reveal that there
is very little error in magnitude, but a high angle error
between the 32- and 16-bit storage formats. However, the
high angle errors are only present on very small vectors,
and thus may not be a problem for most applications.
The 16-bit storage format has also the advantage of al-
lowing much larger volumes to reside completely in the
limited memory on GPUs.
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