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Abstract 1 Introduction

Purpose To create a fast and generic method with sufficient

quality for extracting tubular structures such as blood ves

sels and airways from different modalities (CT, MR and US)  Blood vessels and airways are both examples of impor-
and organs (brain, lungs and liver) by utilizing the computa tant tubular structures in the human body. The extraction
tional power of graphic processing units (GPUS). of these structures can be essential for planning and guid-
Methods A cropping algorithm is used to remove unnec-ance of several surgical procedures such as bronchoscopy,
essary data from the datasets on the GPU. A model-baséaparoscopy and neurosurgery.

tube detection filter combined with a new parallel center-  Registration is to create a mapping between two domains,
line extraction algorithm and a parallelized region gragvin for instance between an image and the patient or between
segmentation algorithm is used to extract the tubular strudifferentimage modalities [34]. Registration is an impoitt
tures completely on the GPU. Accuracy of the proposedtep in image guided surgery as it enables us to accurately
GPU method and centerline algorithm is compared to th@lot the location of surgical tools inside the body onto im-
ridge traversal and skeletonization/thinning methodsgisi ages of the patient using optical or magnetic tracking tech-
synthetic vascular datasets. nology. Tubular structures extracted from preoperative im
Results The implementation is tested on several datasets frogges can be matched to similar intraoperative structurgs, e
three different modalities: airways from CT, blood vesselsairways generated by a tracked bronchoscope or brain ves-
from MR and 3D Doppler Ultrasound. The results show thasels extracted from power Doppler based 3D ultrasound, and
the method is able to extract airways and vessels in 3-5 segonsequently create the mapping between preoperative im-
onds on a modern GPU and is less sensitive to noise thaages and the patient. Also, extracted tubular structuoes fr
other centerline extraction methods. pre- and intraoperative image data can be used to reduce
Conclusions Tubular structures such as blood vessels andegistration errors when a corresponding point (anatomica
airways can be extracted from various organs imaged blandmarks or fiducials) patient registration method is used
different modalities in a matter of seconds, even for large Furthermore, during surgical procedures, anatomicatstru

datasets. tures have a tendency to move and deform inside the body
due to respiration, pulsation, external pressure andtiesec
Keywords Segmentation Centerline extraction Vessel- This is called anatomical shift and is a major challenge as
Airway - GPU - Parallel it reduces the surgical navigation accuracy. However,st ha
been shown that registration of blood vessels from pre- and
Erik Smistad Anne C. Elster Frank Lindseth intraoperative image data can be used to detect and correct
Dept. of Computer and Information Science organshift such as brainshift [38].
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is often acquired just before the procedure and thus it is dey
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sirable to process these data as fast as possible as well. T

purpose of this work is to create a fast and generic methoc ,GPU :

with sufficient quality for extracting tubular structurasch Core Core

as blood vessels and airways from different modalities (CT, | | Functional units IRUTETEIRE Wiz

MR and US) and organs (brain, lungs, liver) by utilizing the /“““. asssees

computational power of graphic processing units (GPUS). || | [Shedmemoy|iicache | |Shared memory| Lt cache |
The rest of the introduction discuss GPU computingand. | | ]

provides a brief survey of existing methods for extracting ‘ Texture cache | L2 cache

tubular structures from medical images. An overview of the

contributions in this paper is also given. The methodology| - | 8

section provides a detailed description of each part ofithe i
plementation including how it is optimized for the GPU and Global, constant, texture memory
evaluated. In the result section, performance is measuared i
terms of speed and quality. Finally, the results are diguliss |
and conclusions are given.

PCle

1.1 GPU computing | Host (CPU)

Several image processing techniques are data parallel bﬁ'g. 1 General architecture of a GPU and its memory hierarchy. Note
cause each pixel can be processed in parallel using the sam&vever, that the actual architecture is much more complex tied d
instructions. Graphic Processing Units (GPUs) allow manyor each GPU. This diagram only shows the general features.
pixels/voxels to be processed in the same clock cycle, en-

abling substantial speedups. The GPU is a type of single L .

instrl?ction, multiple l?jata (glMD) processor. It cZn pemﬂorg — As acenterline, i.e. a line that goes through the center
the same instruction on each element in a dataset in paral- of the tubular structures.

lel. This is achieved by having many functional units like  Both representations are useful in different applications
arithmetic-logic units (ALUs) that share a control unitgFi  For instance, the centerline is very useful for registratio

1 depicts the general layout of a GPU and its memory hiyphile the segmentation is useful for volume estimation and
erarchy. The GPU originally had a fixed pipeline that wasis,alization of the structures’ surface.

created for fast rendering of 3D graphics. The introduction  There exist several methods for extracting tubular struc-
of programmable shaders in the pipeline made it possible tQ,re5 from medical images. A recent and extensive review
run programs on the GPU. However, the task of programgp, piood vessel extraction was done by Lesage et al. [29]
ming shaders to solve arbitrary problems requires knowls,4 an older one by Kirbas and Quek [25]. Two reviews on

edge about the GPU pipeline as the problem at hand neegs segmentation of airways were done by Lo et al. [31] and
to be transformed into a rendering problem. General purgimer et al. [40].

pose GPU (GPGPU) programming languages and frame- 5 common method for extracting tubular structures is
works such as CUDA and OpenCL were created to makvte0

; ) , _“"to grow the segmentation iteratively from an initial poimt o
GPU programming easier. The field of GPU computing is,

, , oo rea using methods such as region growing [27,45, 16], ac-
still young. However, a brief survey of medical image pro-ye ¢ontours and wave front propagation (e.g. snakes and
cessing and visualization on the GPU was recently prowde%vel sets) [24,35,46,32]. A centerline can then be extrhct
by Shi et al. [39]. from the segmentation using skeletonization and 3D thin-
ning methods [28,18,22].

Growing a segmentation using only a model of desired
intensity values has shown to give limited result in several
applications such as airway segmentation where the thin air
way walls may cause severe segmentation leakage [32]. Thus
in many applications it may be necessary to use a model of
— As asegmentation either as a binary classification wherethe shape of the tubular structures as well. Also, these-grow

each voxel in the volume is given a non-zero value if iting methods are very sensitive to initialization.
belongs to the tubular structure or as a surface model of Tube Detection Filters (TDFs) are used to detect tubular
the structure. structures and calculates a probability that a specific lvoxe

1.2 Methods for extracting tubular structures

Tubular structures are usually extracted from volumes o tw
different ways:
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is inside a tubular structure. Most TDFs use gradient infor2 Methodology
mation, often in the form of an eigenanalysis of the Hessian
matrix. Frangi et al. [15] presented an enhancement and ddhe implementation is written in C++ and OpenCL and is
tection method for tubular structures based on the eigenva@vailable online. OpenCL is a framework for running paral-
ues of this matrix. Krissian et al. [26] created a model-baselel programs on heterogeneous platforms such as CPU and
detection filter that fits a circle to the cross-sectionahpla GPU. The implementation consists of five main steps that
of the tubular structure defined by the eigenvectors of thare all executed on the GPU (see Fig. 2).
Hessian.

A centerline can be extracted directly from the TDF re-
sult without a segmentation using methods such as ridge[

traversal. Aylward et al. [2] provides a review of different
centerline extraction methods and proposed an improvee rid
traversal algorithm based on a set of ridge criteria anéudiff ¢
ent methods for handling noise. Bauer et al. [6] showed how

this method could be used together with Gradient Vector
Flow. For applications where only the centerline is needed,
segmentation can be skipped using this method and thus re--

duce processing time. ¢

Some related work on accelerating the extraction of tubu- (

Cropping

Pre-Processing

lar structures on the GPU exist. Erdt et al. [14] performed th Tube Detection Filter

TDF and a region growing segmentation on the GPU and re- -

ported a 15 times faster computation of the gradients and up i

to 100 times faster TDF. Narayanaswamy et al. [36] did ves- N

sel luminae region growing segmentation on the GPU and Centerline Extraction 3
reported a speedup of 8. Bauer et al. presented a GPU accel,_ )

eration for airway segmentation by doing the Gradient Vec- ¢

tor Flow computation on the GPU in [7] and the TDF calcu-

lation on the GPU in [8]. However, they only provide a lim-
ited description of the GPU implementations. Helmberger
et al. performed region growing for airway segmentation on
the GPU and a lung vessel segmentation on the GPU using . . .

a TDF [21]. They reported a runtime of 5-10 minutes using™9- 2 Block diagram of the implementation
a modern GPU and CUDA compared to a runtime of up to

an hour using only the CPU. The first step is to crop the volume in order to reduce
the total memory usage. The second step involves a few pre-
processing steps such as Gaussian smoothing and Gradient
Vector Flow which are necessary to make the results less
1.3 Contributions sensitive to noise and differences in tube contrast and size
After pre-processing, the model-based TDF by Krissian et
The methodology in this paper is inspired by the works ofal. [26] is used. From the TDF result, the centerlines are
Bauer et al. [7,3,8] and Krissian et al. [26] and is a con-extracted using a new parallel algorithm. Finally, a segmen
tinuation of our previous paper on GPU accelerated airwayation is performed using the centerlines as seeds for a re-
segmentation [41]. gion growing procedure. However, if only the centerlines ar
The main contributions in this paper are: needed for a given application, the segmentation step can be
skipped. The rest of this section will describe each of the
— Afast and generic method that can extract tubular strucfive steps in further detail.
tures like blood vessels and airways from different modal-
ities (e.g. CT, MR and Ultrasound) and organs (e.g. lung,

Segmentation
A J

brain and liver) entirely on the GPU. 2.1 Cropping
— A new parallel GPU algorithm for extracting centerlines o
directly from the TDF result. Memory on the GPU is limited and may not be enough for

— Ageneric parallel cropping algorithm for reducing mem-Processing large datasets. However, most medical datasets

ory usage on the GPU. http://github.com/smistad/Tube-Segmentation-Framework/
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contain a lot of data that is not part of the structures of in- Ls < Lmin Ls > Lumin Ls < Lmin
terest. Usually these areas are located at the borders of the
image. For instance, in the thorax CT image in Fig. 3, the ac-
tual lungs where the airways and blood vessels are located,
constitutes only about 50% of the image. The rest consist of
space outside the body, body fat and the bench that the pa-
tient is resting on. As several of the methods used to perform
segmentation and centerline extraction process each woxel
the entire volume, removing the unnecessary data will not
only reduce memory usage, but also execution time.

In our previous work [41], we presented a novel crop-
ping algorithm for airway segmentation that could be run in
parallel on the GPU using less than half a second for large
CT volumes of the lungs. In this paper, this algorithm is ex-
tended to crop other medical datasets, such as MR and 3D
Doppler Ultrasound. The cropping method works by consid-
ering slices in all three orthogonal directions x, y and z. Fo
each slices, the method determines if the slice intersects the
region of interest (ROI). This is done by counting the num-
ber of rows in the slice that intersects the ROI for each slice
and storing it ads. If Ls > Lmin, the slice is considered to
have intersected the ROI. The cropping borders are found by
traversing throughs twice froms= 0 ands = size and find- Fi_g. 3 Example of the cropping pr_ocedure. The black arrows indicate
. . . o slices that havés > Ly and thus intersected the ROI while the grey
ing the first slice that has a value above a specific thresholgl, s are the opposite. This can be used to find the croppintgtsr
Lmin. These slices are then selected as cropping borders marked with dotted red lines in the figure. This is done in ale¢h
andc,. This is done for each direction and results in 3 pairgirections and each slice is processed in parallel.
of cropping borders which is all that is needed to crop the
volume. An example of how this cropping procedure works

. I A o -number of areas that are above and below a certain thresh-
is shown in Fig. 3. For some applications and directions it

. ; old. Details on this estimation &f; can be found in our pre-
may be necessary to start the search from the milell&s®

to the end instead. This was the case for the axial directio%Ious work [41].

of CT airway datasets.
Algorithm 1 provides pseudocode for the cropping methegd, Pre-processing and Gradient Vector Flow
The functioncALCULATEL is used for estimating for each
slice in a given direction and the functiGmNDCROPBOR-  Before the actual tube extraction, some pre-processing is
DERsIs used to find the cropping borders for a specific di-necessary. First, an optional thresholding is performed on
rection giverL and using the thresholdnin. Each direction  the dataset using a lower and upper threshigig &ndima)-
and slice can be processed in parallel on the GPU. For fipresholding may be necessary for datasets which have a
dataset of size 512x512x512 this results in 3*512 individuaqarge range of intensity values such as CT images. The thresh
threads that can be processed using the same instructionsg|ging is done to remove unnecessary gradient information
The parts of this cropping method that is application dein the image which may lead to unwanted tubular structures
pendent, aside from the parameltgfin, is the estimation of peing detected. For instance, when extracting airways all
Ls and whether the search for cropping borders starts fronhtensities above -500 HU can be converted to -500 as no
the middle or at the ends of the dataset in a given directiongjrways have intensity above this threshold. Second, some
For MR and 3D Doppler Ultrasound images it is suffi- noise suppression is performed. This is done by blurring the
cient to remove the background from the dataset. For thigataset using Gaussian smoothing with standard deviation
purpose_s can be estimated by counting the number of vox-g. Afterwards, the gradient vector fieldis created and nor-
elsn, on a scan line that is above a certain threshglds  malized using a parameter calléglax. All gradients with a
is then set to the number of rows in sliseheren, > IT. A length above this parameter will be set to unit length and
threshold value of 100 was found to be enough for the MRhe others will be scaled accordingly. The gradient normal-
and Ultrasound datasets. ization is necessary for contrast invarian?gax should be
For CT images of the lungs, fat and other tissue that aradapted to the expected level of contrast and noise. Also, if
not part of the lungs can also be discarded by counting thelack tubular structures are to be extracted (e.g. airways)

Ci C2
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Algorithm 1 Cropping ever, their implementation was for 2D images only. In this
function crRoRvolume) paper, a highly optimized 3D GPU implementation of GVF
L« CALCUUgE'-%O'Umev )s(()L ) from Smistad et al. [42] was used with a predefined num-
X1,X%2 < FINDCROPBORDERYL, X . . - -
L ¢ CALCULATEL (volume, y) ber of 250 iterations. This |mplgmentat|0n allows GVF to
y1,Y2 < FINDCROPBORDERSL, Y) be calculated for large volumes in only a few seconds.

L < CALCULATEL(volume, z)

71,2 < FINDCROPBORDERYL, 2)

crop volume according to x1,x2,y1,y2,z1 and z2 2.3 Tube Detection Filter
return volume

end function L
Krissian et al. [26] created a TDF that assumes that thecross

function CALCULATEL (volume, direction) section of the tubular structure is circular. Their TDF calc
for each slice s in direction in paralléb lates how well a circle match the gradient information in the
en dEfztr'matd‘s cross-sectional plane defined by the eigenvectors of the Hes
return L sian matrix. The TDF starts by creating a circle with a small
end function radius in the cross-sectional plarié.= 32 evenly spaced

points on the circle is sampled from the vector field. Each

function FINDCROPBORDERSL, direction) point, i, is found by calculating its angle from the center

size« volume.direction.size

CL e —1,C e —1,5+0 and then calculating a vectdr which lies in the plane and
while (¢; = —1 orc; = —1) and s< size do has anglex.
if Ls > Lmin and c; = —1then o
C1+ S 7
end if a=N @)
if Lsize-1-s> Lmin and c; = —1then
C + size—1—s di = e sina + e3cosa (2)
end if
s s+1 The position of point on a circle with radius and cen-
end while terv is then given as + rd;. How well the circle match the
return ¢y, c; gradient information is calculated as the average dot prod-

end function

uct of the gradient at positiorand the inward normal of the
circle at pointi which is equal to—-d;. The TDF of Krissian

et al. [26] is shown in equation 3. The radius of the circle is
the gradients have to inverté = —0l. All of these pre- increased with 0.5 voxels as long as the average dot product
processing parametens(,, Imax 0, Vmax) are modality de-  3lso increases.

pendent and the values used in this paper for each modality

is collected in Table 1. N—1

1
Filters that use the Hessian matrix to detect tubular struc¥ (v,r,N) = N Zﬁ V(v+rd;)-—d; ?3)
tures require gradient information to be present in thearent i=
of the tube. For large tubes, suchtaachea and the main As noted by Bauer et al. [7,3], the GVF method may

bronchi, the gradient information will not exist in the center. gjiminate the gradient information for small low-contragiu-
Thus, it is necessary to propagate the gradient informatiopyr structures. Thus to detect these tubular structures it i
from the tube edge to the center. There exist two main me“’hecessary to run the TDF two times. Once with a small
ods of doing this: Gaussian scale space and Gradient Vectpidius on the initial vector field to detect the small low-
Flow (GVF). Xu et al. [47] originally introduced GVF as contrast structures and once with the GVF vector field to de-
an external force field for active contours. Bauer et al. [Stect the rest. Different amounts of Gaussian blur can be used
3] were the first to show that GVF could be used to creatgqy the tube detection of large and small structur@sg
scale-invariance of TDFs. The GVF method has the advanyng Olarge @S Seen in Table 1). The TDF response from each

tage that it is feature-preserving and thus can avoid thie-pro of these are combined by selecting the largest TDF value for
lem of several structures diffusing into each other to @eatgych voxel.

the illusion of a tubular structure at a higher scale. Also,

GVF is only calculated using one scale. However, it has the

disadvantage that it is very computationally expensivei-Ne 2.4 Centerline Extraction

ertheless, it has been shown that GVF can be accelerated

using GPUs. Eidheim et al. [13], He and Kuester [20] andCenterline extraction from TDF results has primarily been
Zheng and Zhang [48] all presented a GPU implementatiodone by ridge traversal [2,4,6,5]. One problem with theeidg
of GVF and Active Contours using shader languages. Howtraversal procedure is that it can’'t be run in parallel. Thus
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Finally, the angled from the plane to the vectar can be
calculated using the projected vecter

6:cosl(r'rp> (6)

r{[rpl

Let N be the set of all neighbor voxels that are close
(Ir] < r, wherer is from Eq. 3) and the angle B < 30°.
For each of thesa, the magnitude of the GVF vector field
|V|is compared to the centerpotThe centerpoint is only
/ valid if the magnitude for the centerpoixis lower than all
neN:

Fig. 4 Determining the anglé from a centerpoink to its neighbom.

1 if YneN |V(n)|>|V(x
C<X>={o - V()] > V()| @)
the GVF vector field and the TDF result has to be transferred
to the CPU. Nevertheless, the serial ridge traversal afgari This has the effect that it removes centerpoints that are

can be used together with the rest of the GPU algorithmgot in the center of a tubular structure.
presented in this paper (e.g. cropping, pre-processitig tu  The next step is to remove centerpoints that are too close
detection and segmentation). to each other. The reason for doing this is that it reduces
In this section, a new parallel centerline extraction (PCE}he total number of centerpoints and thus makes the next
algorithm is presented. This centerline algorithm, untidge step, linking the centerpoints, much more efficient. Remov-
traversal, can be run efficiently in parallel on a GPU. Theing points that are too close to each other is done by dividing
method has 4 main steps: Identifying centerpoints, filgerin the entire dataset into a grid with each grid element spannin
centerpoints, link centerpoints and centerline selection  4x4x4 voxels. For each cube in the grid, the best centerpoint
is selected and the rest of the centerpoints in that cube is
removed. The centerpoint with the highest TDF value is se-

2.4.1 Identify candidate centerpoints lected as the best centerpoint in a cube.

The method for extracting centerlines starts by identgyin
all possible centerpoints. This is done by creating a 30cstru

tyr_e with the same size as the dataset. Th'_s Structure Is g, 50 centerpoint, the method establishes links between

tialized to O for each voxel _and all voxels with a TDF Valuethe centerpoints to create centerlines. This is done by con-

above the threshol@. = 0.5 is set to 1. necting each centerpoint to the two centerpoints that aee cl
est and fulfills the following criteria:

2.4.2 Filter centerpoints — The angle between them is above 120 degrees.

— The average TDF value along the line is higher than
The next step removes centerpoints that are either notinthe 1. — 05,

center of a tube or too close to other centerpoints. Whether a
centerpoint s in the center of a tube or not can be determinesis 4 centerline selection
by the magnitude of the GVF vector fied|, becaus4V| is

2.4.3 Link centerpoints

smallest in the center of the tube. Due to noise and other image artifacts invalid centerpoints
First, a vector from the centerpoixto a neighbor voxel and centerlines may be created. However, these are usu-
nis calculated: ally short and not connected to the actual tubular strusture
Thus invalid centerlines can often be discarded based on
r=n-—x (4)  their length.

In this step, all centerpoints that are connected with cen-

Second, this vector is projected onto the cross-sectidaaép terlines from the previous section are assigned the same la-
of the tube (see Fig. 4). The plane’s normais the eigen-  bel. Those that are not connected get different labels.lGrap
vector of the Hessian matrix associated with the eigenvalueomponent labeling is the problem of finding and labeling
of smallest magnitude. This vector points in the directibn o nodes in a graph that are connected. Hawick et al. [19] pre-
the tube. sented several GPU implementations of algorithms for graph

component labeling. In our implementation, an iterativeéhod
ro=r—eg(er-r) (5) using atomic operations was used. Assumiihdabels,N
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counters are created and initialized to 0. A kernel is exatut Algorithm 2 Parallel Inverse Gradient Flow Tracking
for each centerpoint and the length of each centerline;iden S+ piLATE(C)
tified with a label, is determined by using an atomic incre- Q < DILATE(S) - S
ment operation on the counter identified by the centerpoints stopGrowing«— false
P . . y P .~ while !stopGrowingdo
labels. After the execution of this kernel, the counterd wil stopGrowinge— true
contain the total length of each centerline. When the length GROW(S, Q, stopGrowing)

of all connected centerlines have been calculated, thedarg  €nd while

centerline or all centerlines with a specified minimum léngt retum S
can be extracted. function GROW(S, Q, stopGrowing)
for each voxek in paralleldo

if x € Qthen

2.5 Segmentation for each voxel € Adj26(x) do
g ify ¢ Sand |V(y)| > |V(x)| and
. . (Z=y)Vly) )

Bauer et al. [7] proposed a method for generating a segmen- argma%eadize(y) (\(Z—ymV(y)\) = xthen
tation from the centerline using the already computed GVF gi%uu{?{(}}
vector field. They named this method Inverse Gradient Flow StopGrOWﬁ/q% false
Tracking Segmentation because it for each voxel tracks the end if
centerline using the directions of the GVF vector field, but i de'?d for

endl

the inverse direction. This segmentation method is a type of

. . . end for
seeded region growing, where the centerlines are the seeds,, 4 fynction
and the direction and magnitude of the vectors from the GVF
vector field is used to determine if the segmentation is al-

lowed to continue to grow. . _ . The texture system is optimized for fetching and caching
~ In this paper, a data parallel version of this algorithmgata from 2D and 3D textures [37, 1] (see Fig. 1 for an overview
is presented (see Algorithm 2). First, the centerlines,r€, & of the memory hierarchy on the GPU). The fetch unit of the

dilated in parallel on the GPU and added to the segmentatiogxture system is also able to perform interpolation and dat

For each iteration, therow function runs a kernel on each Since most of the calculations in this implementation in-

voxelx in the entire volume. If the voxedis part ofQ, the 5|5 the processing of voxels, the implementation can be
gradients of all unsegmented neighbors are checked to Sgg e|erated considerably by storing the volumes as 3D tex-

if they point tox and has a larger magnitude thanf such  yro5 and using the texture system. This increases the speed
a neighbor voxey is found,x is added 5 its neighboty ¢ etching data and trilinear interpolation which is usad i

is added taQ and the stopGrowing variable is set 0 false. o TpF calculation when sampling arbitrary points on a cir-
Since this variable is initialized to true for every itecatj cle.

?dedgéowmg procedure will stop when no more voxels are In this implementation, textures has been used for almost
) all 3D and 2D structures, such as the vector fié)Jd DF and

For the 3D Ultrasound Doppler modality another Seg'segmentation

mentation method than the inverse gradient tracking method NVIDIAS OpenCL impl tation d t Fwrit
is used. The reason for this, is that this data can be quite s Dpen’.L Impiementation does not stpport wrt-

noisy. This alternative segmentation method starts byealc Ing to 3D textures in a kernel. Thus for NVlDIA GPUs, the
lating an average radius based on the circle fitting metho&esqItS has to be wrltt_en to_g regular buffer f'r?t and Fhen
for each link. For each discrete point on the centerline, al\:0p|e<j to a texture. Still, writing to 3D textures is possibl
voxels within a sphere with the same radius is marked a¥
part of the segmentation.

ith CUDA.

Memory access latency can also be improved by reduc-
ing the number of bytes transferred from global memory to
the chip. The most common way to store a floating point

2.6 GPU Optimization number on a computer is by using 32 bits with the IEEE
754 standard. However, most GPUs also support a texture
2.6.1 Texture system storage format called 16-bit normalized integer. With this

format, the data is stored as 16-bit integers (shorts) in tex
The GPU has a specialized memory system forimages, calledes. However, when it is requested, the texture fetch unit
the texture system. The GPU has this because the GPU ¢®nverts the 16-bit integer to a 32-bit floating point number
primarily made and used for fast rendering which involveswith a normalized range from -1.0 to 1.0 or 0.0 to 1.0. This
mapping images, often called textures, onto 3D objects. reduces accuracy, and may not be sufficient for all applica-
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tions. However, it was found to be sufficient for this applica Work-groups

tion (see result section). This storage format also halves t " workitems Work-tems ]
global memory usage, thus allowing much larger volumes to ~ ,. L L UL L LN ,. asnssaaa -
fit in the limited GPU memory. In our recent work on opti- aqware ‘/-/“\H/“‘H/“ \H’-/“\H"“\Hiip\‘
mizing GVF for GPU execution [42], it was discovered that \ . 8 K . > /

using textures and the 16-bit format could make the parallel Units of execution Idle functional units

eX?CUtlon a lot faster, -de_pendmg on .the size of the datasle—ltg. 5 Grouping with work-group size of 8 work-items and unit of exe-
being processed. In this implementation, the 16-bit normalcution size of 3. As 8 is not a multiple of 3, there will be idle ftional
ized integer format is used for the dataset, vector fields anghits for each work-group that is scheduled. This leads toefficient

Software

TDF result. use of the GPU.
2.6.3 Work-group size
2.6.2 Sream compaction Work-items, also called threads, are instances of a kemk| a

are executed on the GPU in groups. AMD calls these units

After finding the candidate centerpoints, we only want toOf executionwavefronts, while NVIDIA calls themwarps.
process these points in the next centerpoint filtering stepthe units are executed atomically and has, at the time of
This can be done by launching a kernel for every voxel inriting, the size of 32 and 64 work-items for NVIDIA and
the volume and have an if statement checking whether theMD GPUs respectively. The work-items are also grouped
voxel is a candidate centerpoint. However, this can be verjpgether ata higher level in software. These groups aredall
inefficient on a GPU. As explained in the introduction, thework-groups in the OpenCL terminology (in CUDA they
functional units on the GPU are grouped together and sha@e referred to as thread blocks). If the number of work-
a control unit. This means that the functional units in a grou items in a work-group is not a multiple of the unit of exe-
have to execute the same instructions in each clock cycle. TeHtion size, some of the GPUs’ functional units will be idle
ensure that the correct result is generated by if statement®r €ach work-group that is executed as shown in Fig. 5.
the GPU will use masking techniques. Nevertheless, such alhus, the work-group sizes can greatly affect performance
if statement may not reduce the processing time as it woul@nd optimal size can vary a lot from device to device. There
if it was executed sequentially on a CPU. On a GPU, it mighis a maximum number of work-items that can exists in one
even increase the processing time due to the need of maskiM@rk-group. This limit is on AMD GPUs currently 256 and
techniques to ensure correct results. This is a common pro®n most NVIDIA GPUs it is 1024. Also, the total number
lem in GPU computing and one solution is a method calle®f Work-items in one dimension has to be dividable by the
stream compaction. Stream compaction removes voxels thétze of the work-group in that dimension. So, for a volume
should not be processed from the volume so that the keff size 400 in the x direction, the work-group can have the
nel is only run for the valid voxels, thus no if statement isSize 2 or 4 in the same direction, but not 3, because 400 is
needed. Stream compaction can be done on the GPU witHt dividable by 3.

logarithmic time complexity. Two methods for performing ~ For most of the GPUs used on this implementation a
stream compaction is parallel prefix sum (see Billeter et aWork-group size of 4x4x4 was used. One exception is the
[11] for an overview) and Histogram Pyramids by Zieglernew Kepler GPUs from NVIDIA where a work-group of
et al. [49]. In this work, Histogram Pyramids has been used6x8x8 was found to be much better. The 4x4x4 work-group
due to the fact that this data structure has shown to be bettéiz€ gives a total of 64 work-items in each work-group. To
in some applications by exploiting the GPU's texture Sys_make sure that the cropped volume is dividable by 4 in each
tem for faster memory access. The original implementatioflirection, the size of the cropping is increased until the ne
by Ziegler et al. [49] was for 2D. However, in our previous Size is dividable by 4.

work [43], we presented a 3D version of this stream com-

pa_1ct|on algorithm which also reduced the memory usage fo&_7 Evaluation

this data structure.

The Histogram Pyramid stream compaction method hag this section, the evaluation of the proposed GPU method
been used in three places of this implementation. All in thes described.

centerline extraction step. The 3D Histogram Pyramid is

used after the candidate centerpoint step and filter centep-7.1 Comparison with other methods

points step. A 2D Histogram Pyramid is used after the link

centerpoints step, where each link is stored in an adjacendhe method in this paper was compared in terms of speed
matrix on the GPU. and quality with other commonly used segmentation and
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centerline extraction algorithms. Blood vessels from tHe M Note that for each modality the same parameters were
Angio, Doppler Ultrasound and synthetic datasets were segised, except for a small set of modality dependent parame-
mented using thresholding after performing Gaussian bluters such as blur and radius (see Table 1).

As thresholding is unsuitable for segmenting airways, anim

plementation of region growing, similar to the consenativ 5 7 3 Speed and memory usage

region growing used in Graham et al. [16], was used instead.

This region growing methods starts by automatically findingrhe speed of the method was measured on all the clinical
a seed point insidérachea. This is done by looking for a gatasets using three different GPUs from both AMD and
dark circular region in the middle of one of the upper slices\v|DIA. Two high-end GPUs with a peak performance of
After a seed has been found, the dataset is filtered with ground 4 tera floating point operations per second (TELOPS)
Gaussian mask witlr = 0.5 voxels and the intensities are (AMD HD7970 and NVIDIA Tesla K20). And one GPU of
capped at -500 HU as no airways have intensities above thiie previous generation with a peak performance of about 1
threshold. Next, a region growing procedure with segmenTF| OPS (NVIDIA Tesla C2070). The implementation was
tation leakage detection is used. The region growing is pefyn using both 16-bit normalized integers and 32-bit flagtin
formed several times with increasing threshold startinywi point vectors to see how the two different data types aftecte
the intensity of the seed. For each iteration, the volume sizihe speed. The proposed method was also run on an Intel i7-
is measured. If the volume size increases with more than 28770 CPU (4 cores, 3.4 GHz) with 16 GB memory to show
000 voxels in one iteration a segmentation leakage has mog{e speedup of using a GPU versus a multi-core CPU. This
likely occurred and the previous threshold is used. Finallyyas also done to demonstrate that the proposed implemen-
a morphological closing is performed to remove any holesgation can be run in parallel on a multi-core CPU with no
inside the segmentation. modification.

The proposed GPU implementation can be used together For comparison, runtime measurements for region grow-
with both the PCE algorithm and the ridge traversal algoing, thresholding and skeletonization were performed for
rithm for the centerline extraction step. Thus, with theaer ogch modality using an Intel i7-3770 CPU with 4 cores run-
ridge traversal algorithm a hybrid solution is used whete alpjng at 3.4 GHz. Parts of the region growing and threshold-
steps except the centerline extraction step is run on the. GP{hg methods were parallelized using OpenMP.

For the centerline extraction, the proposed GPU method  As explained earlier, the memory available on GPUs is
is evaluated with both the proposed PCE centerline algaimited. Thus it is important to keep the memory usage as
rithm and the ridge traversal algorithm and compared to afpy as possible. In this paper, a cropping procedure and a
ITK filter by Homann [22] based on the skeletonization al-16-bit normalized integer data format was used to reduce
gorithm by Lee et al. [28]. This skeletonization method perthe memory usage on the GPU. To show the effect of the
forms iterative thinning of a Segmented volume. Note thabropping procedure’ the average dataset size and peak mem-
the implementation by Homann [22] does not exploit paralory usage before and after cropping was measured on sev-

lelism. eral datasets from different modalities. Peak memory us-
age occurs in the Gradient Vector Flow step. In this step,
2.7.2 Qualitative analysis 3 vector fields with 3 components, each of the same size

as the dataset are needed. For an uncropped volume of size
To show the general applicability of the method, clinicad im 512x512x800 and 32-bit floats this amounts te 3+« 4 *

ages from three different modalities and two different agya 512x 512+ 800 bytes = 7200 MB. When using 16-bit nor-
were used: malized integers the memory usage is halved.

1. Computer Tomography scans of the lungs (Airways, 12 o i
datasets) 2.7.4 Quantitative analysis

2. Magnetic Resonance images of the brain (Blood vessel ) . .
g g ( %’he quality of the extracted centerlines and the segmentati

4 datasets) . . .
3. 3D Ultrasound Doppler images of the brain (Blood ves.vere measurgd using realistic synthetlg vascular tree.vol-

sels, 7 datasets) umes and thel.r ground truth segmentatlon and centerlines.

These synthetic volumes and their ground truth data were

The study was approved by the local ethics committee, andreated using the VascuSynth software by Hamarneh and
the patients gave informed consent prior to the procedurdassi [17,23]. One of these synthetic volumes is depicted
For each modality, several datasets were processed using tin Fig. 6. Three generated datasets were used. Each with a
proposed GPU implementation together with the PCE andifferent amount of Gaussian additive noise. This was done
the ridge traversal centerline algorithms and region gngwi to show how well the different methods performs with in-

/ thresholding together with skeletonization. creasing amounts of noise.
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Parameter | CT Airways | MR Vessels| US Vessels
Imin -1024 100 50

Imax -400 300 200

Osmall 0.5 1.0 2.0

Olarge 1.0 1.0 3.0

Vmax 0.3 0.1 0.1

I'min 0.5 0.5 15

I max 25 8 7

Lmin 128 10 0

Table 1 A list of modality dependent parameters and the values used
for each of the datasets.

3.2 Speed and memory usage

Fig. 6 Synthetic vascularimage created using the VascuSynth softwarghe speed measurements of our GPU implementation with
by Hamarneh and Jassi [17, 23] the proposed centerline extraction method and the ridgertra
sal algorithm is collected in Table 2. These results show

] ) o that using 16-bit normalized integers is faster than 32bit
Each discrete point of the centerline is called a centerayp gPUs. and opposite on NVIDIA GPUs.

point. The accuracy of the centerline was measured using Taple 3 contains speed measurements of the non-GPU
the Hausdorff distance measure which is the average dignethods: region growing, thresholding and skeletonizatio
tance from each centerpoint of the extracted centerlinfeso t Comparing the runtime of Table 2 and 3 reveals that the
closest point on the ground truth centerline. To estimate ho 5py methods are much faster than the simple serial seg-
much of the vascular tree was extracted, each extractet! poig,antation and skeletonization methods.

marks all ground truth centerpoints within a radius of 4 voX-  1apje 4 shows the average memory usage for all the clin-

els as detected. The total percentage extracted is them-calG.,| gatasets, both with and without cropping and the 16-bit

lated as the number of detected points divided by the t0t&§a¢5 type. From these results it is evident that the memory
number of ground truth centerpoints. Any extracted center:

X usage is significantly reduced when cropping and 16-bit nor-
point that was farther away than 4 voxels from a grouth truth, 5 i-eq integers are used.

centerpoint was marked as invalid. The parameters for the

amount of Gaussian blur ang,,x were adjusted for each

dataset and centerline method so that no extracted centey:3 Quantitative analysis

points were marked as invalid. Precision and recall for the

segmentation is calculated by comparing each voxel of th&aple 5 contains the results of the quantitative analysis de

segmentation result to the ground truth. scribed in 2.7.4. From these results it is clear that usieg th
The quantitative analysis was performed using the prol6-bit normalized integer format does not affect the gyalit
posed GPU implementation with both PCE and ridge travercompared to using the standard 32-bit floating point num-

sal and thresholding+skeletonization together with XGwbi- bers. The same applies to the clinical datasets.
malized integers and 32-bit floating point numbers. Furthermore, thresholding is able to extract more from

the synthetic datasets for noise levels 0.1 and 0.2. However
for noise level 0.3, the proposed PCE algorithm is able to
extract almost 10% more than the thresholding and skele-
tonization technique and the ridge traversal algorithm.

3 Results

o ) 4 Discussion

3.1 Qualitative analysis
4.1 Qualitative analysis

Figures 7, 8 and 9 show results for each method on each
modality. Also, to further show the general applicabilify o The results of the clinical datasets (Fig. 7, 8 and 9) indi-
the method, extracted vessels from liver and lung is inadudecate that the quality of the segmentation and centerlines ar
in Fig. 10. These results indicate that the method is able tquite comparable with some small differences. However, if
extract tubular structures from several modalities andmmsg the segmented tubular structure is very irregular or hasshol
with comparable quality by changing only a few parameterskeletonization will create poor centerlines as can be seen
(see Table 1). Fig. 9. The PCE and ridge traversal algorithms however, do
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Fig. 7 Results for a CT image of the lungseft: Proposed GPU method + proposed PCE algorithhiadle: Proposed GPU method + ridge
traversal algorithmRight: Region growing with skeletonization

Fig. 8 Results for an MR Angio image of the braiceft: Proposed GPU method + proposed PCE algoritktiddle: Proposed GPU method +
ridge traversal algorithnRight: Thresholding with skeletonization

Method Datasets AMD HD7970 NVIDIA Tesla K20 | NVIDIA Tesla C2070 | Intel i7-3770 CPU
16-bit / 32-bit (secs)| 16-bit/ 32-bit (secs)| 16-bit/32-bit (secs) | 32-bit (secs)
Proposed GPU implementation CT Airways (12) | 4.7/6.9 21.9/13.4 40.9/19.2 177.1
+ Proposed PCE MR Vessels (4) | 4.6/6.6 28.7/16.4 44.9/26.6 200.7
US Vessels (7) | 2.7/3.8 13.0/7.1 24.1/14.8 134.4
Proposed GPU implementation CT Airways (12) | 5.8/8.3 22.3/13.9 37.3/19.3 175.9
+ Ridge traversal MR Vessels (4) | 6.3/8.5 29.7/17.5 45.3/27.3 200.5
US Vessels (7) | 3.4/4.7 13.3/74 24.1/15.0 1415

Table 2 Average runtime of 10 runs using the proposed GPU implementatipettier with the proposed parallel centerline algorithm twed
ridge traversal centerline algorithm on different datasetsdevices. The first three devices (HD7970, K20, C2070) aresaifiile the last device

(i7-3770) is a multi-core CPU.
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Fig. 9 Results for a 3D Ultrasound Doppler image of vessels in the btafi: Proposed GPU method + proposed PCE algorithtiddle:
Proposed GPU method + ridge traversal algoritRight: Thresholding with skeletonization

Fig. 10 Segmentation result from other organs using proposed GPU méttrad.left to right: Vessels of liver from CT, vessels of liver froniR
and vessels of one lung from CT.

Segmentation and centerline method| Datasets | Avg. runtime (seconds)
Region Growing + Skeletonization CT Airways (12) | 158

Thresholding + Skeletonization MR Vessels (4) | 77

Thresholding + Skeletonization US Vessels (7) | 33

Table 3 Average runtime of 10 runs using region growing, thresholdimgj skeletonization/thinning on different modalities.
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Datasets Avg. original size | Avg. percentage removed| Avg. peak memory usage| Avg. peak memory usage
without cropping (MB) with cropping (MB)
16-bit / 32-bit 16-bit / 32-bit
CT Airways (12) | 512x512x704 76% 3169/6339 762 /1524
MR Vessels (4) | 628x640x132 23% 2826 / 5652 793/1586
US Vessels (7) | 272x288x437 31% 1223 /2445 417/ 834
Table 4 Memory usage and effect of cropping
Dataset | Noise() | Method Avg. centerline | Extracted Segmentation | Segmentation
error (voxels) centerpoints (%) | recall precision
16-bit / 32-bit 16-bit / 32-bit 16-bit / 32-bit | 16-bit / 32-bit
Dataset1| 0.1 Proposed GPU method + PCE 0.57/0.58 95.6/95.6 0.79/0.79 0.84/0.84
Proposed GPU method + Ridge traversa0.35/ 0.35 92.9/92.9 0.78/0.78 0.84/0.84
Thresholding + Skeletonization - 10.34 - /988 - 10.70 - 10.99
Dataset 2| 0.2 Proposed GPU method + PCE 0.60/0.59 80.9/80.8 0.57/0.57 0.83/0.83
Proposed GPU method + Ridge traversa0.31 / 0.31 76.1/76.1 0.56/0.56 0.86/0.86
Thresholding + Skeletonization - 10.36 - 1821 - 10.67 - 10.89
Dataset 3| 0.3 Proposed GPU method + PCE 0.65/0.65 54.4154.4 0.36/0.36 0.79/0.79
Proposed GPU method + Ridge traversa0.31 / 0.31 42.4142.4 0.28/0.28 0.90/0.90
Thresholding + Skeletonization - 10.47 - /456 - 1047 - 10.74

Table 5 Performance on three synthetic dataset created with the VasttuSyftware (Hamarneh and Jassi [17,23]). For each line, the diltse v
is acquired using 16-bit normalized integers and the second @&ibit floats.

not suffer from this problem as the centerline extraction isHD7970 and K20 GPUs, the parallel computation cost of
not based on the segmentation result. PCE on this slower device is most likely higher than the
There are several examples in the literature of methodsdge traversal computation plus the data transfer time.
that claim to be robust enough to segment and extract center- |t js clear from the results that using 16-bit normalized
lines of tubular structures of different types (e.g. vesaeld  integers instead of 32-bit floats for the vector fields isdast
airways), organs and modalities. Some examples are Baugh AMD GPUs, and slower on NVIDIA GPUs. This is due
etal. [3-8], Krissian et al. [26], Aylward et al. [2], Benman o the fact that NVIDIA's OpenCL implementation does not
sour et al. [10], Li et al. [30], Behrens et al. [9], Cohen et al support writing directly to 3D textures. Because of this re-
[12], Lorigo and Faugeras [33] and Spuhler et al. [44]. How-striction, buffers have to be used in the most computation-
ever, most of these present results only for a few datasets gfly expensive step, Gradient Vector Flow. This means no
one or two organs/modalities. The PhD thesis of Bauer andD cache optimization and hardware data type conversion.
related articles [3-8] is one exception that present reéoiit  Both of which can increase performance.
several different organs (e.g. lung, heart and liver), hawre The runtime of the proposed GPU implementation on
only from CT. Although their approach is similar to the ap- 5 myiti-core Intel CPU is several minutes compared to a
proach in this paper, Bauer et al. use different methods tQ,; seconds on the high-end GPUs. This illustrates the huge

perform the major steps (tube detection, centerline e*tracspeedup gained from running tube detection and segmenta-
tion and segmentation) for each organ. In this paper, ®sulti;n on the GPU.

from several organs (e.g. lung, brain and liver), modaiitie Skeletonization is the most time-consuming step of the
(e.g. CT, MR and Ultrasound) and structures (e.g. vessels

serial methods and is mainly dependent on the thickness

and airways) are presented and use the same method forg the tubular structures. This is evident in the long exe-

the major steps. In addition, the method presented in this .. ~ . . . .
aper is open source and very fast Cution time of over 2 minutes when processing the airway
pap P y ' datasets. Nevertheless, the skeletonization implementat

used in this comparison does not exploit parallelism.
4.2 Speed and memory usage Helmberger et al. [21] noted that it is difficult to pro-

cess alarge CT scan due to the limited memory on the GPU.
The proposed GPU implementation is slightly slower usingThey solved this challenge by decomposing the volume into
1-2 seconds more when used with the ridge traversal centepverlapping sub-volumes that are processed sequentially o
line extraction method than PCE on the two fastest GPUghe GPU. However, this takes more time and they reported
the AMD HD7970 and the NVIDIA Tesla K20. However, runtime of several minutes. In this paper, the memory limit
for the slower GPU, the proposed GPU implementation withis avoided by performing cropping and using a 16-bit nor-
ridge traversal is just as fast or even faster. Since this GPhalized integer data format. Table 4 shows that the crop-
have a peak performance of about one fourth to that of thping algorithm is able to discard a large portion of the total
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input volume. This reduces memory usage significantly anclav’s University Hospital for the datasets. The authors wolso a
without it, no GPU at the present time would have enougHke to convey thanks to NTNU and NVIDIA's CUDA Research Cente

memory to perform the entire calculation in one step foH:’rog_ram forthewharglware_ contributions to the HPC LabH_Mttthelr
continued support this project would not have been possible.

large medical images. Using 16-bit for storage also halves
the memory usage allowing larger volumes to be prOCesse&onﬂict of interest Erik Smistad, Anne C. Elster and Frank Lindseth
[S

entirely on the GPU. On average, the peak memory usage is clare that they have no conflict of interest.
below 1 GB when cropping and 16-bit data types are used,
which is below the memory limit of most modern GPUs.

1.

4.3 Quantitative analysis

The average centerline error is worse for the proposed PCE

algorithm than the ridge traversal and skeletonizatiorhmet 2.

ods. This increased centerline error is due to the fact kteat t
PCE algorithm creates straight lines between centerpoints

However, it is below 0.7 voxels which we argue is not prob- 5

lematic for most applications and this approximation en-

ables the proposed PCE algorithm to extract over 10% more*

of the synthetic vascular tree compared to the ridge tralers
algorithm for large noise levels (0.3).

Thresholding assumes that all voxels with an intensity 5.

above some threshold is part of the tubular structures. This
assumption is correct for these synthetic datasets andss th
able to extract more for noise levels 0.1 and 0.2. However,
this assumption is usually never correct for a clinical data

and especially not if the noise level is high. This is evident 7

with noise level 0.3 and in the MR Angio modality in Fig.
8 where the segmentation contains some noise and parts of

the cranium. 8.

5 Conclusion 9

In this article, a fast and generic method that can extract
tubular structures such as blood vessels and airways from
images of different modalities (CT, MR and US) and organs,
(brain, lungs and liver) was presented. This was achieved by
utilizing the computational power of modern Graphic Pro-
cessing Units. The method was compared to other meth-
ods such as region growing, thresholding, skeletonizdtyon
thinning and ridge traversal. Results from both synthetit a
clinical datasets from three different modalities (CT, MR

and US) was presented. The results show that the method}é:

able to extract airways and vessels in 3-5 seconds on a mod-
ern GPU. These near real-time speeds can be beneficial in

reducing processing time in image guided surgery applical3.

tions such as bronchoscopy, laparoscopy and neurosurgery.

Although faster and more general than other methods, thgy

quality of the centerline and segmentation was found to be
comparable for all the methods.

15.
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