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Abstract. Tube detection filters (TDFs) are useful for segmentation
and centerline extraction of tubular structures such as blood vessels and
airways in medical images. Most TDFs assume that the cross-sectional
profile of the tubular structure is circular. This assumption is not always
correct, for instance in the case of abdominal aortic aneurysms (AAAs).
Another problem with several TDFs is that they give a false response
at strong edges. In this paper, a new TDF is proposed and compared
to other TDFs on synthetic and clinical datasets. The results show that
the proposed TDF is able to detect large non-circular tubular structures
such as AAAs and avoid false positives.

1 Introduction

Tube detection filters (TDFs) are used to detect tubular structures in 3D images.
They perform a shape analysis on each voxel and return a value indicating
the likelihood of the voxel belonging to a tubular structure. The likelihood can
be used for segmentation and centerline extraction of tubular structures such
as abdominal aortic aneurysms from medical images. The segmentation and
centerline of these structures are useful for visualization, volume estimation,
registration and planning and guidance of vascular interventions.

Many TDFs use second order derivative information to perform the shape
analysis like the eigenanalysis of the Hessian matrix. The eigenvalues of this
matrix can be used to determine the shape of the local structure and the eigen-
vectors can be used to find the shape’s orientation. To calculate the Hessian
matrix at a voxel inside a tubular structure, the gradient information from the
edges has to be present. For small tubular structures this is not a problem, but
for large ones the gradients have to be propagated from the edges to the center.
One way to do this is to compute the Hessian matrix in a Gaussian scale space
by convolution with a Gaussian of different standard deviations. The final TDF
measure is calculated as the maximum response over all scales. One problem
with using Gaussian scale space is that on larger scales objects diffuse into each
other and small tubular structures that are close to one another can diffuse to-
gether and give the impression that a larger tubular structure is present. Bauer
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and Bischof [2] suggested to replace the gradient vector field from the Gaussian
scale space with an edge-preserving diffusion process called gradient vector flow
(GVF), originally introduced by Xu and Prince [13] as an external force field to
guide active contours. With the GVF, only one scale is needed and the problem
of objects diffusing into each other is avoided.

Frangi et al. [6] introduced a TDF called a vesselness filter. This filter uses
the eigenvalues (λ) of the Hessian matrix to determine whether the current
voxel x is part of a tubular structure. With the three measures Ra = |λ2|/|λ3|,
Rb = |λ1|/

√
|λ2λ3| and S =

√
λ21 + λ22 + λ23 the vesselness filter is defined in (1).
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{
0 if λ2 > 0 or λ3 > 0
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Frangi et al. used Gaussian scale space methods to do the multi-scale filtering,
however Bauer et al. [2–4] later used the vesselness TDF successfully with the
GVF.

The circle fitting TDF introduced by Krissian et al. [8] uses the eigenvectors
of the Hessian matrix to identify the tubes cross-sectional plane. In this plane a
circle is fitted to the underlying edge information. The fitting procedure samples
N points on a circle with radius r and calculates the average dot product (2)
of the edge direction (V ) and the circle’s inward normal (−di). The radius is
gradually increased and the radius with the highest average is selected. The TDF
response is then equal to the average with the select radius r as in (2).

Tcf (x) =
1

N

N−1∑
i=0

V (x + rdi) · (−di) (2)

As a measure of edge direction, Krissian et al. [8] used the gradient calculated at
the scale corresponding to the current radius. Bauer et al. [5] used the GVF field
instead. Since this TDF assumes that the cross-sectional profile of the tubular
structure is circular, it produces a lower response for non-circular tubular struc-
tures. Also, the cross-section of a tube is estimated using the eigenvectors of
the Hessian matrix which are not accurate, hence even if the tubes are circular
the cross-section may often appear as ellipses instead. Furthermore, the circle
fitting TDF can give response in voxels where there is not a tubular structure. A
semi-circle with a very high contrast can be enough to give a medium response.
Pock et al. [9] proposed a symmetry measure to reduce the false response at
such edges. This measure reduces the TDF response where the gradient’s mag-
nitude, i.e. the contrast, differs along the circle. However, this also reduces the
response for tubular structures with a non-circular cross-section. Bauer [1] con-
cluded in his thesis that several TDFs, including the vesselness and circle fitting
TDF, have the problem that the response decreases significantly when the cross-
section of the tubular structure deviates from a circle, which makes these tubular
structures hard to distinguish from noise in the TDF response.

In this paper, a new TDF is proposed that uses GVF and is able to properly
detect non-circular irregular tubular structures and reduce the amount of false



responses. In addition, it is demonstrated that a multigrid method is necessary
for calculating the GVF for large tubular structures such as abdominal aortic
aneurysms (AAAs).
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Fig. 1. Block diagram of the
implementation

Previously, we have developed a framework for
extracting airways and blood vessels from differ-
ent image modalities (e.g. CT, MR and US) using
tube detection filters [10]. The framework consists
of five main steps that are all executed on the
graphic processing unit (GPU) (see Fig. 1) . The
first step is to crop the volume in order to reduce
the total memory usage. The second step involves
some pre-processing, such as Gaussian smooth-
ing and gradient vector flow, which are necessary
to make the results less sensitive to noise and
differences in tube contrast and size. After pre-
processing, the TDF is performed. From the TDF
result, the centerlines are extracted and finally,
a segmentation is performed with a region grow-
ing procedure using the centerlines as seeds. The
entire implementation is available online. Previ-
ously, the circle fitting TDF by Krissian et al. [8] was used in this framework.
In this paper, a new TDF is proposed as a replacement for this filter to improve
detection of large non-circular tubular structures and avoid detection of false
tubular structures.

2.1 Large Tubular Structures and Gradient Vector Flow

The most common way to calculate GVF is to use Euler’s method as demon-
strated by Xu and Prince [13]. However, this method is very slow to converge [7].
And for large tubular structures where the gradients at the edges have to diffuse
a long way to the center, this becomes a problem (see Fig. 3). To solve this
problem, Han et al. [7] used multigrid methods to calculate GVF and achieved
a much better convergence rate. In this paper, a GPU implementation of this
multigrid method was used [11].

2.2 A New TDF for Non-Circular Tubular Structures

Like the circle fitting TDF, the proposed TDF uses the eigenvectors of the Hes-
sian matrix to identify the orientation of the tubular structures. The two eigen-
vectors associated with the eigenvalues of the largest magnitude e2 and e3 span
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the cross-sectional plane of the tubular structure. In this plane, N line searches
are performed from the current voxel x at different angles. For each line search
i, a phasor is used to create vectors di that define the search direction θ.

θi =
2πi

N
di = e2 sin θi + e3 cos θi (3)

Each line search continues until the edge of the tubular structure is encountered
and the distance from the center to the edge for line search i is ri. The edges
are detected as the first peak in the vector field’s magnitude above the fixed
threshold 0.01. This threshold states the minimum gradient magnitude of an
edge of a tubular structure. Thus, the value of 0.01 will allow most edges, but it
is necessary to eliminate noise. If a dataset has noise with a higher contrast, this
threshold may be increased. The problem of detecting false tubular structures is
reduced by limiting the length of the line searches with a parameter rmax. How-
ever, when detecting very large tubular structures, such as AAAs, rmax has to
be set high and thus might not reduce the number of false positives. Also, if only
large tubular structures are to be detected, a parameter, rmin, can be set which
sets the lower bound for the radius of the tubular structures to be detected.
Using these distances, a measure C(x) is created of how likely it is that the
voxel x is in the center of the tubular structure (4). This measure enables the
proposed TDF to be used for extracting centerlines and was also used by Wink
et al. [12].

C(r) =
2

N

N/2−1∑
i=0

min(ri, rN/2+i)

max(ri, rN/2+i)
(4)

Finally, the TDF measure T is defined as the product of the center likelihood
measure C and a measure M of how well the gradient vectors at the border
correspond to the direction of the tubular structure e1.

M(x) =
1

N

N−1∑
i=0

(1− |V n(x + ridi) · e1|) (5)

T (x) =

{
0 if ∃iV n(x + ridi) · (−di) < 0
C(r)M(x) else

(6)

Ideally, the gradient vectors V should be perpendicular to the direction of the
tubular structure. This can be checked by taking the dot product of the normal-
ized vectors V n and e1. The closer the dot product is to zero, the closer the two
vectors are to being perpendicular. At the borders of large tubular structures,
the data will, locally, resemble more a plate structure than a tubular structure
which may lead to an incorrect tube direction e1. The measure M thus reduces
the response in the borders of the tubular structure where the tube direction e1
may be incorrect. This greatly improves the centerline extraction which uses the
tube direction e1 [10]. Also, if there exist a vector that is more than 90◦ from the
direction to the center −di, the TDF measure is set to 0. This is done to further
reduce the amount of false responses in which the edge gradient has another



direction than towards the center and is similar to the circularity measure used
by Pock et al. [9].

3 Results

In this section, results of the proposed TDF are presented for both synthetic and
clinical data and compared to the vesselness and circle fitting TDF in conjunction
with GVF. The parameters used for the GVF are µ = 0.1 with 6 iterations. The
vesselness TDF was run with the parameters α = 0.5, β = 0.5 and c = 100.
And the circle fitting TDF used 32 sample points and the proposed TDF used
N = 12 line searches.

Synthetic Data: A dataset containing tubular structures with different
types of cross-sectional profiles was created. The profiles are displayed in the
top of Fig. 2. This dataset contains tubular structures with circular, elliptical,
several irregular profiles and one false tubular structure. The vesselness, circle
fitting and proposed TDF were performed on this dataset. The responses along
a line going through the middle of all of these tubular structures were recorded
and are displayed as graphs in Fig. 2. The figure shows that the response of the
circle fitting TDF is considerably reduced when performed on tubular structures
with a non-circular cross-section, while the proposed TDF detects these almost
as well as the circular structure. The circle fitting TDF also has a high response
at the false tubular structure to the far right.

Fig. 2. The top row shows the cross-section of five different tubular structures and one
false tubular structure. The three graphs below are the responses from the vesselness,
circle fitting and proposed TDFs respectively, measured in a line that goes through the
middle of all the cross-sections (the grey line in the top row).



Clinical Data: The TDFs were also executed on clinical CT datasets of
abdominal aortic aneurysms (AAAs). Figure 3 illustrates the need for the multi-
grid method when calculating the GVF on large tubular structures such as an
AAA. The figure shows the magnitude of the vector field after running GVF
using Euler’s method with 1000 iterations (about 6 seconds) and the multigrid
method with 6 iterations (about 1 second). From this figure, it is evident that
GVF with Euler’s method has problems with diffusing the gradients on the edge
of the aneurysm to the center, which is necessary for the TDFs. Over 10 times
more iterations would be needed to reach the center with Euler’s method which
would reduce performance considerably. However, with the multigrid method
the gradients are diffused to the center in about 1 second.

Figure 4 shows a maximum intensity projection of the response for each TDF
on a CT image of an AAA. The TDFs were all executed on the same GVF vector
field thus requiring only one scale. The same window and level were used on the
circle fitting and the proposed TDF as both of these TDF have responses from
0 to 1. Also, the minimum radius (rmin) and maximum radius (rmax) used were
7 and 45 mm. This enables visual comparison of the two TDFs and it is clear
that the circle fitting TDF creates a weaker response in the aneurysm than the
proposed TDF. Furthermore, the amount of noise, especially from the spine, is
higher with the circle fitting TDF. A different level and window were used for the
vesselness TDF as its range is exponential. However, the AAA was not detected
with this filter.

Figures 5 and 6 depicts the results using three different algorithms on four
different AAA CT images. For comparison, the first column in the figures shows
the segmentation result using the seeded region growing segmentation method.
However, as this method leads to segmentation leakage into the spine on all
datasets, the centerline was not possible to extract. The middle and right col-
umn show the segmentation surface and centerlines obtained with the circle
fitting and the proposed TDF using the framework from [10] and the multigrid
GVF method [11]. Here, rmin and rmax were set to 2 and 45 mm respectively. The
vesselness TDF was not able to detect the AAAs and was therefore not included.
The datasets consisted of 388-420 slices with size 512x512. The runtime of the
entire implementation (see Fig. 1) including the TDF, centerline extraction and
segmentation for these datasets was 4-10 seconds using a modern AMD Radeon
HD7970 GPU.

4 Discussion

The results shows that the proposed TDF is able to properly detect large non-
circular tubular structures such as AAAs in CT images. Figures 5 and 6 show
that seeded region growing fails to segment the AAAs due to leakage to the spine
and the circle fitting TDF is not able to properly detect some of the AAAs that
deviate most from a circular cross-sectional profile.

The response of the vesselness and circle fitting TDF is dependent on the
contrast due to the use of eigenvalues (Eq. 1) and gradient (Eq. 2). However,



Fig. 3. Magnitude of the vector field after running gradient vector flow (GVF) on a
AAA CT dataset. Left: Euler’s method with 1000 iterations. Right: Multigrid method
with 6 iterations. The image to the left shows that GVF with Euler’s method has
problems with diffusing the gradients on the edge of the aneurysm to the center which
is necessary for the TDFs.

Fig. 4. Maximum intensity projection of TDF responses on a CT image of an abdom-
inal aortic aneurysm (AAA) using the same GVF vector field. Left: Vesselness TDF.
Middle: Circle fitting TDF. Right: Proposed TDF. The same level and window were
used on the circle fitting and proposed TDF. A different level and window were used
for the vesselness TDF as its range is exponential.



Fig. 5. Left: Region growing. Middle: Circle fitting TDF. Right: Proposed TDF.



Fig. 6. Left: Region growing. Middle: Circle fitting TDF. Right: Proposed TDF.



the response of the proposed TDF is invariant to the contrast due to the use of
the normalized gradient V n in (5). Nevertheless, Bauer and Bischof [4] proposed
a solution to this by adding a parameter Fmax for the maximum contrast. Any
gradient with a magnitude above this parameter would be normalized and any
below, divided by this parameter. But this has also the effect of amplifying the
effect of noise. The proposed TDF eliminates the need for this parameter.

5 Conclusions

A new tube detection filter using gradient vector flow was proposed and com-
pared with two other commonly used filters. It was shown that the proposed
filter is able to properly detect non-circular tubular structures such as abdomi-
nal aortic aneurysms and thus enable segmentation and centerline extraction of
these structures.
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