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Abstract

Ultrasound-guided regional anaesthesia can be challenging, especially for inexperienced physi-
cians. The goal of the proposed methods is to create a system which can assist a user in
performing ultrasound-guided femoral nerve blocks. The system shows in which direction
the user should move the ultrasound probe to investigate the region of interest and to reach
the target site for needle insertion. Additionally, the system provides automatic real-time
segmentation of the femoral artery, the femoral nerve, and the two layers fascia lata and
fascia iliaca. This aids in the interpretation of the 2D ultrasound images and the surround-
ing anatomy in 3D. The system was evaluated on 24 ultrasound acquisitions of both legs
from six subjects. The estimated target site for needle insertion and the segmentations were
compared to those of an expert anaesthesiologist. Average target distance was 8.5 mm with
a standard deviation of 2.5 mm. The mean absolute differences of the femoral nerve and the
fascia segmentations were about 1-3 mm.
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Introduction

The use of regional anaesthesia (RA) is increasing due to the benefits over general anaes-
thesia (GA) such as reduced morbidity and mortality (Rodgers et al., 2000; Beattie et al.,
2001; Urwin et al., 2000), reduced postoperative pain, earlier mobility, shorter hospital stay,
and lower costs (Chan et al., 2001). Despite these clinical benefits, RA remains less popular
than GA. One reason for this is that GA is more successful and reliable than RA. Ultra-
sound has been used to increase the success rate of RA (Griffin and Nicholls, 2010; Dolan
et al., 2008). However, ultrasound-guided RA can be challenging, especially for inexperi-
enced physicians. Good theoretical, practical and non-cognitive skills are needed in order
to achieve confidence in performing RA and to keep complications to a minimum. Studies
indicate that RA education focusing on illustrations and text alone is not sufficient (Worm
et al., 2014). The RASimAs1 project (Regional Anaesthesia Simulator and Assistant) is a
European research project which aims at providing a virtual reality simulator to improve
the training of doctors performing RA, as well as an assistant to lessen the cognitive burden
and help performing RA procedures.

One way to lessen the cognitive burden is to provide a segmentation of the ultrasound
image, showing the most important structures and thereby aiding the user in interpreting
the images. The image segmentation may also be used to guide the movement and posi-
tioning of the ultrasound probe. Hadjerci et al. (2014) segmented the median nerve from
ultrasound images using k-means clustering for finding hyperechoic tissue, then a texture
analysis method based on a support vector machine classifier was used to identify the nerve.
A segmentation method for the sciatic nerve in ultrasound images was presented by Hafiane
et al. (2014). Their method included a probabilistic Gaussian mixture model, edge detec-
tion, gradient vector flow and active contours. Yu et al. (2013, 2014) proposed a system for
automatic needle insertion and probe guidance for ultrasound-guided epidural anesthesia.
They used a template matching technique to identify the optimal needle insertion point. A
guidance system for spine anesthesia was presented by Brudfors et al. (2015). Their ap-
proach involved scanning the spine with 3D ultrasound followed by alignment and overlay
of a statistical model of the lumbar spine on the ultrasound images.

This article focuses on creating an assistant for ultrasound-guided RA to block the femoral
nerve. The femoral nerve is located laterally to the femoral artery and is hyperechoic. Still,
this nerve is generally hard to distinguish from surrounding tissue. Thus, anatomical knowl-
edge about the shape and location relative to other structures must be employed. Another
important aspect of the segmentation is that in order to be useful in this application the
segmentation must work in real-time and be fully automatic. This article is a continuation of
Smistad and Lindseth (2015), where methods for real-time segmentation and reconstruction
of the femoral artery in ultrasound images as well as a model to ultrasound registration
method were introduced. Here, novel methods for the segmentation of additional important
structures such as the femoral nerve, fascia lata, and fascia iliaca are presented. Methods
for estimating the target needle insertion site and visualizations for guiding the positioning

1http://www.rasimas.eu
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of the ultrasound probe are also proposed.

Materials and Methods

The next section will describe the hardware setup of the proposed assistant, followed
by an overview section of the assistant software. Then each of the assistant components
are described in the order they are executed. The first component is the femoral artery
tracking procedure followed by the target estimation, model to ultrasound registration, probe
guidance, and finally the fasciae and femoral nerve segmentation methods. In the end of this
section, the evaluation of these methods is described.

Hardware setup

In terms of hardware, the assistant consists of an ultrasound system (Ultrasonix SonixMDP,
Analogic, Boston, USA) and a high-end computer for running the assistant software. The
ultrasound rack has been modified with a larger screen (Dell 24”) and the high-end com-
puter has been attached on the side. The ultrasound scanner is equipped with an L14-5
linear probe and SonixGPS electromagnetic tracking of both the probe and the needle. The
high-end computer has an Intel i7-5820 3.3 GHz CPU, AMD Radeon R9 Fury GPU and 16
GB of RAM. Spatial calibration was done using a calibration matrix from the manufacturer
(Ultrasonix, 2011). Harmonic imaging was used with frequency 6.6 MHz and gain at 55%.
The images were streamed from the ultrasound system to the assistant computer with an
Ethernet cable, the Plus toolkit and the OpenIGTLink protocol (Lasso et al., 2014).

Software overview

The assistant software starts in an inactive state where only a probe contact detection
algorithm is executed for each ultrasound image frame. This algorithm uses the change
in image intensity to determine if the ultrasound probe is in contact with the skin of the
patient. When contact is achieved, the assistant starts to guide the user in scanning the
femoral region. In this process, an artery detection method is used to find the femoral
artery. After the artery has been discovered, the artery tracking takes over and the user is
asked to first move the probe upwards, i.e. towards the head of the patient. The user is asked
to move the probe upwards until the artery descends into the abdomen, the assistant then
directs the user to move the probe downwards. When enough of the artery has been scanned
to estimate the target area for needle insertion, the assistant directs the user towards the
target. Finally, as the target is reached, the segmentation of fascia lata, fascia iliaca and the
femoral nerve is executed.

To achieve real-time performance, the presented methods are all implemented using the
framework for heterogeneous medical image computing and visualization (FAST) (Smistad
et al., 2015a). This framework enables efficient computation and visualization on hetero-
geneous systems which includes different processors such as multi-core CPUs and graphic
processing units (GPUs). GPUs have shown to have great potential in accelerating medical
image segmentation (Smistad et al., 2015b) and registration (Fluck et al., 2011).
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Femoral artery segmentation and 3D reconstruction

Methods for femoral artery detection, tracking and reconstruction from ultrasound images
were presented in Smistad and Lindseth (2015). Only a short description of these methods
are provided here for completeness.

The femoral artery is modelled as an ellipse. The artery is first detected by a GPU-based
algorithm which initializes the artery tracking. This algorithm is completely automatic and
requires no user interaction. The method does a brute-force search for black ellipses in
the ultrasound image. A measure of fit is calculated by comparing the image gradients of
the smoothed ultrasound image to the normals of an ellipse. Each pixel in the image is
investigated and several different major and minor radii ranging from 3.5 to 6 mm are used.
The best scoring ellipse is kept and if the score is above a certain threshold, it is accepted
and used to initialize the tracking of the artery. The artery tracking is achieved with an
extended Kalman filter and the ellipse model. The Kalman filter predicts the position and
shape of the artery for each image frame. The prediction is corrected by edge measurements
performed along the normals of the current ellipse. This is used to create an estimate of the
position and shape of the artery for the current image frame. If the artery moves out of the
image, or the edges disappear, the tracking stops. The artery detection algorithm will then
take over to look for a black ellipse to initialize the tracking again.

Since the probe is tracked, the 3D position of the artery in the 2D ultrasound image can
be estimated. The reconstruction algorithm uses this 3D position to create a sphere at that
position with the radius obtained from the tracking algorithm. All voxels which are inside
the sphere in the reconstruction 3D volume are given the artery label. This volume is then
passed on to the surface extraction method in FAST which extracts the surface mesh of the
reconstructed artery volume in real-time on the GPU.

Target estimation

The femoral artery is a continuation of the external iliac artery, which rises up from the
abdomen under the inguinal ligament. About 3.5-5 cm inferior to the inguinal ligament,
the femoral artery gives off to the deep femoral artery and becomes the superficial femoral
artery (Mamatha et al., 2012). This femoral artery along with other surrounding structures
are depicted in Figure 1. Two criteria are used for estimating the target needle insertion
site.

1. The target should be above the bifurcation of the femoral artery.

2. The target should be where the artery is at minimal depth.

After the bifurcation, the radius of the artery should decrease. Thus, the point of bifur-
cation of the femoral artery is estimated using the step model in (1) with the radius r(i) at
each artery centerpoint i. This model finds the breakpoint k which minimizes the difference
between each radius r(i) and the average radius on both sides of the breakpoint. Thus, this
method finds any transition in the radius as shown in Figure 2. L is the number of artery
centerpoints. The centerpoints are sorted so that the first centerpoint 0 is the centerpoint
closest to the head of the patient, while the last centerpoint is the one closest to the feet of
the patient.
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Figure 1: Illustration of the femoral nerve block region showing the femoral artery, vein and nerve along
with the femur and the pelvic bone. Image courtesy of H. E. Mørk (helemork.com)
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A threshold on the difference between the average radius on both sides of the breakpoint k
is used to determine if k belongs to the bifurcation. The threshold was set to 10% of the
average radius. This is necessary because not all acquisitions may cover the bifurcation.

The minimal depth requirement will eliminate positions superior of the inguinal ligament
which are too deep. The depth is calculated along the imaging direction vector, which is
the direction the probe points in. As this may change during the acquisition, the average of
all directions during the acquisition is used. The middle of all artery centerpoints that are
within 2 mm depth of the minimal depth centerpoint is selected as the target as shown in
Figure 2. This was found to be more robust than selecting the centerpoint with the minimal
depth, as the depth estimation is not so accurate, which is mostly due to pressure changes
and inaccuracies in the tracking system. While the femoral artery is being reconstructed,
the target is estimated continuously.

Model to ultrasound registration

The model to ultrasound registration is used primarily for providing anatomical context to
the user by visualizing a model of the surrounding structures together with the ultrasound
images in the 3D view. The anatomical model was created from a single abdominal CT
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Figure 2: Illustration of a reconstructed femoral artery and the target estimation method which identifies
the artery bifurcation and the target based on the depth of the artery.

volume with the patient in supine position. From this CT volume, the bone was segmented
using region growing. Since the model does not incorporate the anatomical variation in this
region, the visualization is not expected to be accurate. Registration of the model to the
ultrasound images is difficult as there are no easily identifiable landmarks in the ultrasound
images. Instead, the target site estimated using the method in the previous section is used to
provide a landmark. The corresponding target point is identified manually in the model and
landmark registration is used to register the model to the ultrasound images. However, three
landmarks are needed for the registration. To obtain two more landmarks, two points at fixed
directions and distances are estimated from the ultrasound images. The second landmark
is selected in the direction of the feet along the artery, 1 mm from the target point. The
direction of the artery is calculated using the centerpoints from the artery tracking. The
third landmark is 1 mm below the target point. The registration is updated continuously
when the landmarks change during ultrasound acquisition. More details as well an evaluation
of this registration procedure can be found in Smistad and Lindseth (2015).

Probe guidance

When tracking of the femoral artery is started, the user is asked to move the probe
towards the head of the patient. This is indicated by a green bar on top of the ultrasound
image as shown in Figure 3. The estimated target is used to give updated probe guidance
instructions to the user. According to how much is scanned above and below the target,
the user is asked to move the probe up and down indicated by a green bar at the top or at
the bottom of the ultrasound image, respectively. If at any time more than 1 cm above and
below the target has been reconstructed, a green transparent probe appears at the target
position in the 3D view. At this point the user should align the ultrasound probe with this
transparent probe as shown in Figure 4. Green bars will also appear in the ultrasound image
to guide the user to the target. For the needle insertion, the ultrasound probe should be
placed so that the artery is at the right side of the image for the right leg and the left side
for the left leg. In this way, the femoral nerve will appear somewhere in the middle of the
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Figure 3: 2D view of the assistant showing the ul-
trasound image with the annotated femoral artery
in red. The green bar on top of the image is a visual
cue to the user indicating that the probe should be
moved upwards, in the directions of the patient’s
head.

Figure 4: 3D view of the assistant showing a 3D
scene of the reconstructed artery, a model of the
surrounding bone structures, the ultrasound image
and the probe as well as the estimated target loca-
tion for the probe (green transparent mesh).

image. Green bars on the right and left side of the image are used to tell the user to move
the probe to the left or right so that this is achieved.

Fascia lata and iliaca segmentation

Fascia lata and fascia iliaca are two thin layers which have to be penetrated by the needle
to reach the femoral nerve. These fasciae can vaguely be seen in the ultrasound images as
bright horizontal curves (see Figure 5). The fascia segmentation method will not start until
the target probe position is reached and the probe is kept still.

A probability is calculated for both fascia lata PL and fascia iliaca PI for each pixel (x, y)
in the ultrasound image. The probability is based on the distance from the skin surface
(the top of the image), the distance to the femoral artery and the presence of bright edges.
The presence of bright edges will increase the probability that the current pixel is part of a
fascia. Edges are located using the Laplacian of Gaussian (LoG) algorithm with standard
deviation 0.8 mm. As only bright edges are of interest, positive values of the LoG operation
are converted to 0 and negative values are converted to positive values.

E(x, y) =

{
0 if RLoG(x, y) > 0

−RLoG(x, y) else
(2)

Finally, the result is normalized to a range from zero to one (En). The fascia lata
probability PL is then calculated as
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Figure 5: Ultrasound image of the femoral nerve with
manual annotations delineated by an expert. The image
was acquired with an Ultrasonix L14-5 linear probe with
harmonic imaging, 6.6 MHz frequency and 55% gain.

Figure 6: Cross-section illustration of the
region of interest. Image courtesy of H. E.
Mørk (helemork.com).

PL(x, y) = En(x, y)dL(y) (3)

dL(y) =


0 if y > DL,max

1− DL,t−y
DL,t

if y < DL,t

1− y−DL,t

DL,max−DL,t
else

(4)

where dL(y) is a depth factor between zero and one. The constants DL,t and DL,max are
the target and maximum depth of fascia lata respectively. Fascia lata should be above the
femoral artery, but may be below the top of the artery laterally, as shown in Figure 5 and
Figure 6. Therefore the maximum depth is set to the depth of the femoral artery center. If
d is the depth of the femoral artery center, the target depth for fascia lata is set to d/2, thus
a couple of millimeters above the artery.

The fascia iliaca probability PI is calculated as

PI(x, y) = En(x, y)dI(y) (5)

dI(y) =


0 if y > DI,max or y < DI,min

1− DI,t−y
DI,t−DI,min

if DI,min ≤ y ≤ DI,t

1− y−DI,t

DI,max−DI,t
if DI,t < y ≤ DI,max

(6)

where dI(y) is a depth factor between zero and one. The constants DI,t, DI,min and
DI,max are the target, minimum and maximum depth of fascia iliaca. The target depth of
fascia iliaca is set to be the depth of the top of the femoral artery, the minimum depth 4 mm
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above the top and the maximum depth 4 mm below the femoral artery. Both probabilities,
including the Laplacian of Gaussian are calculated on the GPU.

After the fascia probabilities have been calculated, a dynamic programming method is
used to find the cheapest path from the lateral side of the image to the artery. A cheap path
is a path which is smooth and goes through high probability pixels. This approach is similar
to that used by Foroughi et al. (2007) to extract bone contours from ultrasound images.

The minimum cost C of moving from the lateral edge to pixel (x, y) is defined as

C(x, y) = Eext(x, y) + min
k∈[j−r,j+r]

(C(x− 1, k) + Eint(y, k)) (7)

The cost is defined as∞ for the pixels belonging to the artery, thereby making it impossible
for the fascia paths to pass through the artery. The parameter r restricts the number of pixels
the path may jump vertically from one column to the next and was set to 3. Eext(x, y) is the
external energy and is defined as 1− P (x, y) where P is the fascia probability. This energy
is used to drive the path towards the high probability pixels. The internal energy Eint(y, k)
is used as a smoothness criteria on the fascia. Eint(y, k) is defined as α(y − k)2 where α is a
parameter which controls the amount of smoothness, α = 0.1 was used. The minimum cost
C is calculated for all candidate pixels one column x at a time, as the calculation depends
on the results from the previous column (x − 1). The first column is initialized with Eext.
The dynamic programming technique memoization is used to keep track of which index k
gave the lowest cost in (7). The cheapest path can then be found by backtracking from the
artery.

First, fascia lata is extracted using PL, and then fascia iliaca is extracted in the same way
with PI . However, fascia iliaca is also required to be below fascia lata and pass on below the
artery. This is done by only calculating the cost for fascia iliaca for pixels below fascia lata
and the artery, the rest are set to ∞.

Femoral nerve segmentation

The femoral nerve is located below the fascia iliaca, lateral to the femoral artery and
resting on the iliacus muscle as shown in Figure 5 and 6. The femoral nerve segmentation
algorithm therefore uses the already acquired positions of the fascia iliaca and femoral artery
to find the nerve. As with the fascia segmentation methods, the nerve segmentation will not
start until the target probe position is reached and the probe is kept still. The appearance
of the nerve in the ultrasound image is bright and sometimes with a honeycomb like texture
pattern. The iliacus muscle below the nerve is darker with a different texture. Similar to the
fascia segmentation, a probability of the femoral nerve PN is first calculated for each pixel
in the ultrasound image.

PN(x, y) = I(x, y)dN(x, y) (8)

dN(x, y) =


0 if y ≤ FI(x)

1− y−FI(x)
DN,max

if FI(x) < y ≤ FI(x) +DN,max

0 if y > FI(x) +DN,max

(9)
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Figure 7: The segmented ultrasound image provided by the automated system. The femoral artery is shown
in red, the femoral nerve in yellow, fascia iliaca in pink, and fascia lata in green.

The probability depends on the normalized intensity of the pixel I(x, y) and the vertical
distance from fascia iliaca (y − FI(x)). The thickness of the nerve is about 2-4 mm (Gru-
ber et al., 2003) and thus pixels further away from the fascia iliaca should get a lower/zero
probability. This is done by setting DN,max in the equation above to 4.5 mm divided by the
vertical pixel spacing. After the nerve probability map has been generated, it is thresholded
to create a segmentation using a threshold of 0.3. Holes are then removed from the seg-
mentation using a morphological close operation with a radius of 2 pixels. Any thin parts
(< 1 mm) of the segmentation are removed and the largest remaining segmentation object is
retrieved using a flood fill method. Finally, the convex hull of this object is created to form
a smooth representation of the femoral nerve. All methods except the flood fill and convex
hull calculations are done on the GPU to achieve real-time performance. Figure 7 shows an
ultrasound image with segmentation of the femoral artery, femoral nerve, fascia iliaca and
fascia lata.

Evaluation

Ultrasound images of three male and three female volunteers were acquired by an expert
anaesthesiologist using the described hardware setup. The age of the subjects ranged from
25 to 40 with BMI in the normal range of 15-25. The volunteers gave informed consent to
participate in the study, and only anonymized data were stored and used for further analysis.
According to the guidelines from the regional ethics committee, technical and methodological
development work using only anonymized data does not have to be submitted for approval,
and the study was therefore not assessed by the committee. The study only involved an
ultrasound exam, and was therefore not considered to be of any undue risk to the volunteers.
Two ultrasound acquisitions of each leg of each of the subjects were collected giving a total
of 24 image sequences. Initially, the probe was placed below the inguinal ligament. Next,
the probe was moved in an area from 2-3 cm above the ligament down to the bifurcation
where the femoral artery gives off to the deep femoral artery of the thigh. Finally, the probe
was placed and kept still at the target site. These acquisitions were done with the assistant
functionality turned off.
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Subject Leg Target distance (mm)

1 Right 9.5
1 Left 12.8
2 Right 11.0
2 Left 10.1
3 Right 9.5
3 Left 4.7
4 Right 6.6
4 Left 5.0
5 Right 8.6
5 Left 10.7
6 Right 6.9
6 Left 6.4

Average 8.5
Std. dev. 2.5
Maximum 12.8

Table 1: Distance in millimeters between estimated target and that of an expert anaesthesiologist for each
subject and leg (left/right).

The accuracy of the target estimation algorithm was measured by calculating the distance
between the estimated target and the final probe position reached by the expert anaesthesi-
ologist.

For each image sequence, the accuracy of the target estimation and the femoral nerve
and fascia segmentation were measured. The accuracy of the femoral artery segmentation is
not evaluated as it is already covered in Smistad and Lindseth (2015). The femoral nerve,
fascia lata and fascia ilaca were manually segmented by an expert anaesthesiologist in one
image frame for each of the image sequences. The mean absolute difference (MAD) between
the segmentation contours of the manual segmentations and the assistant segmentations was
used to measure the accuracy of the femoral nerve and fascia segmentations. The Hausdorff
distance and the maximum distance were also calculated for the nerve and fascia segmen-
tations, respectively. For the femoral nerve, the closest contour points of the segmentations
were used to calculate the MAD and Hausdorff distance. However, for the fascia segmen-
tations, only vertical distance was used. This was because the lengths of both the manual
segmentations and assistant segmentations were different.

Results

Table 1 contains the distances between the estimated target and the target suggested by
the expert. On average, the distance is 8.5 mm, with a maximum of 12.8 mm.

The segmentation accuracy in millimeters for each subject and leg is summarized in
Table 2. These results show that the mean absolute difference is about 1-3 mm for the
femoral nerve and the two fasciae. The average Hausdorff distance of the femoral nerve is
6.6 mm with the highest being 8.5 mm. The average maximum distance is 2.5 mm for fascia
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Subject Leg Femoral nerve Fascia lata Fascia iliaca
MAD Hausdorff MAD Max MAD Max

1 Right 2.4 8.2 1.5 2.1 1.5 3.3
1 Left 1.6 5.1 1.3 3.0 2.0 3.9
2 Right 1.9 8.5 1.1 2.3 0.8 3.0
2 Left 1.1 4.1 1.2 2.3 1.9 3.9
3 Right 2.2 4.8 0.5 1.1 1.3 3.3
3 Left 2.9 8.5 0.3 3.6 1.5 2.5
4 Right 2.0 6.1 0.2 3.4 0.8 2.9
4 Left 1.8 7.1 1.1 2.2 2.0 9.5
5 Right 1.8 6.4 2.3 4.2 1.9 4.3
5 Left 2.3 8.1 1.3 2.8 1.4 3.6
6 Right 2.3 8.5 0.8 1.6 1.0 3.4
6 Left 0.9 3.3 1.2 1.8 1.2 4.3

Average 1.9 6.6 1.1 2.5 1.4 4.0
Std. dev. 0.6 1.9 0.6 0.9 0.4 1.8
Maximum 2.9 8.5 2.3 4.2 2.0 9.5

Table 2: Segmentation accuracy in millimeters for each subject and leg (left/right).

lata and 4.0 mm for fascia iliaca.
Runtime measurements of the femoral nerve and fascia segmentation methods are col-

lected in Table 3. The speed of the femoral artery segmentation, reconstruction and reg-
istration are already covered in Smistad and Lindseth (2015). The runtime of the target
estimation is not included as it is less than 1 ms.

Discussion

The assistant estimates the target site for needle insertion based on the reconstructed
artery. Experiments on both legs of six different subjects showed that on average the esti-
mated target was 8.5 mm from the target determined by an expert anaesthesiologist. We
argue that this accuracy is acceptable as the ideal site for needle insertion is not a single
point, but rather an area of 1-2 cm.

The femoral nerve, fascia lata and fascia iliaca are difficult for a novice to identify in
an ultrasound image, as their complete contours are usually not visible. An operator will
therefore rely on the surrounding structures, anatomical knowledge and experience in order
to delineate these structures in the ultrasound image. This lack of well-defined contours
also make automatic segmentation of these structures difficult. Although not completely
accurate, the proposed segmentation methods may still be useful for a novice user in order
to identify the structures. Machine learning techniques may be a way to increase the accuracy
of the segmentation, however, these techniques may not satisfy the real-time constraints and
will require a lot more training data.

By utilizing a modern GPU and the FAST framework (Smistad et al., 2015a), the pro-
posed methods together with the methods from previous work (Smistad and Lindseth, 2015)
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Subject Leg Femoral nerve Fascia
segmentation segmentation

1 Right 12 15
1 Left 12 18
2 Right 11 15
2 Left 5 20
3 Right 7 15
3 Left 10 18
4 Right 11 17
4 Left 10 22
5 Right 9 12
5 Left 11 18
6 Right 13 17
6 Left 11 18

Average 10 17
Std. dev. 2 3

Table 3: Speed measured in milliseconds for each subject and leg (left/right).

are able to perform in real-time for the complete assistant application, using less than 100
ms to process a single ultrasound image. The number of frames per second was about 10
using harmonic imaging with the Ultrasonix SonixMDP scanner.

Obesity will negatively impact the overall ultrasound image quality. With poor image
quality, the proposed assistant functionality may not be able to identify the important struc-
tures and therefore not able to assist the user in the procedure. Obesity and the resulting
poor image quality is also a problem for anesthesiologists performing femoral nerve blocks
without the proposed assistant.

Future work of the proposed assistant includes needle insertion guidance and enhance-
ment of the local anaesthetic after injection. The hypothesis that this assistant helps novice
users in identifying the femoral nerve and the target site for needle insertion is not validated
in this article. However, the assistant will be clinically tested and evaluated in future work
at three different clinical sites as part of the ongoing RASimAs project.

Conclusion

A real-time automatic assistant for ultrasound-guided femoral nerve blocks was presented.
The assistant estimates the target site for needle insertion which on average was 8.5 mm from
the target determined by an expert anaesthesiologist. The user is guided towards this target
through several visual cues and a 3D view of the surrounding structures. The results show
that the assistant is able to segment important structures such as the femoral artery, femoral
nerve, fascia lata and fascia iliaca with mean absolute differences of about 1-3 mm.
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