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Abstract—A proper definition of cardiac events such as end-
diastole (ED) and end-systole (ES) is important for quantitative
measurements in echocardiography. While ED can be found using
electrocardiography (ECG), ES is difficult to extract from ECG
alone. Further, on hand-held devices ECG is not available or
cumbersome. Several methods for automatic detection of cardiac
events have been proposed in the recent years, such as using a 2D
convolutional neural network (CNN) followed by 1D recurrent
layers. This structure may be suboptimal, as tissue movement
has a spatio-temporal nature which is ignored in the CNN.

We propose using a 3D CNN to extract spatio-temporal
features directly from the input video, which are fed to long
short term memory (LSTM) layers. The joint network is trained
to classify whether frames belong to either diastole or systole. ES
and ED are then automatically detected as the switch between
the two states. The 3D CNN + LSTM model performs favourably
at detecting cardiac events on a dataset consisting of standard
B-mode images of apical four- and two-chamber views from 500
patients. The mean absolute error between events in the apical
four-chamber view is 1.63 and 1.71 frames from ED/ES reference
respectively. Model inference is fast, using (30 ± 2) ms per 30
frame input sequence on a modern graphics processing unit.

I. INTRODUCTION

Detection of end-systole (ES) and end-diastole (ED) in
echocardiography is an important step when assessing cardiac
function. ED and ES are defined as the time points when the
mitral valve and aortic valve closes respectively [1]. Several
clinical metrics, such as ejection fraction and global longitudi-
nal strain [2] are determined using the ES and ED images. The
current approach for detecting ED usually involves finding the
QRS-complex in additional measurements from electrocardio-
grams (ECG), or by visual inspection of the videos. Finding
ES is more difficult in ECG alone, making visual inspection
of ultrasound (US) images necessary. In clinical practice, this
constitutes a significant amount of work that potentially could
be automated. An additional benefit is that accurate detection
of ES and ED solely using echocardiographic frames removes
the need for applying ECG-patches, further reducing time and

resources. This is especially useful for smaller devices such
as the pocket-sized US scanners.

A multitude of machine learning methods have been pro-
posed for learning video representations. Recently, deep learn-
ing have been able to perform on par or better than traditional
approaches. These methods differ in the way spatial and
temporal features are combined. In the two-stream network
[3], one CNN is trained to extract features from still images,
and another CNN is trained to capture motion patterns using a
stack of optical flow frames. Several methods have been pro-
posed to increase the temporal capacity of these models, such
as extending the CNN to 3D [4]. Another popular approach is
the Long-Term Recurrent Convolutional Network [5], which
uses a CNN to extract features for individual frames. These
features are input into a Long Short-term Memory (LSTM)
[6] recurrent network for temporal fusion. Similarly, [7] use a
shallow 3D CNN to extract features from short clips, which
are passed to an LSTM network. Other methods use deeper
3D CNNs to learn spatio-temporal features [8], [9].

Several methods have been proposed for detecting cardiac
events automatically in echocardiography. Cardiac cycle start
and length are estimated without the use of ECG in [10].
To detect cycle start, the motion of a point near the mitral
annulus is found using speckle tracking. This is compared to a
database of left ventricle (LV) displacement curves to estimate
the cycle start corresponding to the QRS complex in ECG.
Other methods explore manifold learning and dimensionality
reduction [11], [12]. Frames in an echocardiogram are mapped
to a learned manifold, and the fact that ED and ES occur in
periods with small volumetric changes is used to detect these
events as dense regions on the manifold. CNNs have been used
to extract ED and ES with high precision in cine magnetic
resonance imaging [13]. Here, a pretrained CNN is used as
a feature extractor, and features are passed on to an LSTM
layer. The model is trained to regress a typical volume curve
of the LV over a single heartbeat. ED and ES is then identified



as the largest and smallest regressed volume in the sequence,
respectively. A similar approach applied to echocardiography
replaced the pretrained CNN with a residual network [14].

In this work, we replaced the standard CNN with a 3D
CNN for spatiotemporal feature learning. Further, we propose
training the model on a target which is more suited for
detecting ED and ES. The model is trained on variable length
sequences, whereas previous deep learning approaches use
fixed length input videos.

II. METHODOLOGY

A. Problem formulation

To train models for detecting ED and ES frames in a
supervised manner, the target output must be generated. An
intuitive approach involves posing this as classification with
three classes: ED, ES, or neither. However, this introduces a
class imbalance problem, as ED and ES frames are underrep-
resented. An easy way to achieve low loss is then to output
neither for all frames.

In [13], [14] the problem is formulated as a regression task.
Here, the target is set to approximate a typical LV volume
curve, by using a cubic function and normalizing the target 0
to 1. The representation is thus not the actual volume curve
for a given sample, and therefore the model must attempt to
learn a mapping which is not exactly present in the data. For
some cases of pathology, such as in the event of post-systolic
contraction, the volume might not be smallest at the time of
ES. In addition, detecting ED/ES as extrema in the estimated
volume curve might be difficult due to flat regions during
isovolumetric periods, resulting in several candidates.

In this work, the problem is formulated as a binary clas-
sification task. The target is set to 0 for frames belonging
to systole, and 1 for frames in diastole. This alleviates the
issue of class imbalance, as there is a comparable number
of diastole and systole frames. ES and ED is detected as the
frames where the output at the next timestep crosses 0.5 from
below or above, respectively.

B. Network architecture

A 3D CNN architecture is presented which is capable of
handling arbitrarily long sequences (until GPU memory is
full). Due to high GPU memory utilization of 3D convolutions,
the model contains few filters and use pooling frequently
compared to state-of-the-art image recognition models. The
CNN consists of five 3D convolutional layers, each followed
by batch normalization, ReLU activation and max pooling
layers. As one prediction should be made for each input frame,
pooling is only performed along the spatial axes, and not along
the temporal axis. For the same reason, each convolutional
layer pads the input with zeroes to preserve the length of
the data. As in [9], kernels have spatial and temporal size
of 3, except from the first layer which uses a spatial size of
7. The number of feature maps double every convolutional
layer, starting at 16 and ending at 256. At the output of
the 3D CNN, dropout with a probability of 0.3 is performed
to prevent overfitting. The output of shape [t, 4, 2, 256] is

then reshaped into t vectors of shape [2048]. LSTM layers
are added to filter the CNN predictions and increase the
capability to remember longer movements. Both LSTM layers
have a cell state of size 32, resulting in 32 output features
per timestep. An L2 regularization of 1 × 10−4 is used for
recurrent and convolutional kernels. A 1D convolutional layer
with a sigmoid activation is placed at the end of the model,
operating along the temporal axis. The layer has a single
kernel of temporal size 3, with the aim of smoothing the
output of the model and reduce the likelihood of the output
erroneously crossing 0.5 as a result of noisy data. The model
is implemented in Keras with the Tensorflow backend. Fig. 1
shows the overall layout.
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Fig. 1. Schematic of the network architecture with a 3D CNN followed by
LSTM layers and a 1D convolutional layer at the end.

C. The dataset

The dataset consists of apical four-chamber (A4C) and two-
chamber (A2C) echocardiograms from 500 patients, acquired
at the University Hospital of St-Etienne (France) using a
GE Vivid E95 ultrasound system (GE Vingmed Ultrasound,
Horten, Norway) [15]. For most patients, a corresponding
electrocardiogram (ECG) is aligned with each sequence, giv-
ing one ECG measurement per video frame. The data is
representative for a typical outpatient clinic. The videos have
varying sector geometries, sampling rates and durations. The
sample time per frame is between 11.99 ms and 21.05 ms.
Each video contains a varying number of cardiac cycles. For
each video, one frame corresponding to ED and one frame
corresponding to ES is labeled by an expert. The labeled ES
and ED belongs to the same heart cycle, with ED labeled first
for 498 of the A2C videos, and for 481 of the A4C videos.
The dataset is split randomly into three folds, with 300 patients
used for training, 100 for validation during training, and 100
for testing. Both the A4C and A2C videos for a single patient
are placed in the same fold to avoid data leakage.

As only one ES and ED is labeled for each video in the
dataset, no labeled input data contains a full heart cycle. In
addition, a majority of the frames between the labeled ED/ES



belongs to systole, as the labeled ED most commonly occurs
before ES. To have training data for any part of the heart cycle,
an additional ED is labeled by considering the accompanying
ECG signal. The QRS-complex is used to label the ED that
yields a fully labeled heart cycle. From 500 patients, 333
and 334 of the ECG signals corresponding to A4C and A2C
videos respectively are considered of high enough quality to
accurately identify a second ED.

A number of frames before and after the labeled ED/ES are
included to further expand the dataset size, and to make sure
ED and ES does not occur at the first and last frames. The
resulting dataset contains 26818 frames of A4C and 26170
frames of A2C echocardiograms, belonging to both diastole
and systole. The frames are resized to size 128 × 80 using
bicubic interpolation, and normalized by subtracting the mean
and dividing by the standard deviation over all pixels in the
training data.

D. Learning details

Training is done for 100 epochs with cross-entropy loss
applied over each time step. The Adam optimizer with a
learning rate of 1×10−4 was used. At the end of every epoch,
the training data is shuffled. Both A4C and A2C views are used
as training data. Model weights are saved at the epoch with
the lowest mean absolute error (MAE) on the validation set.
Training on only A4C views was also tested, but resulted in
worse performance. The model is trained using mini-batches
of four videos, and shorter videos and targets are padded at
the end with zeroes. The loss is set to zero for padded frames
before backpropagation.

Data augmentations were important for preventing overfit-
ting. Sequences are downsampled temporally by a factor of
2 by discarding every other input frame with a probability of
0.2. Sequences are temporally cropped by randomly discarding
between 0− 80% of the original duration, starting and ending
at a random frame. After this, videos are rotated randomly
between -10 to 10 degrees. Next, videos are randomly cropped
spatially, removing between 0 and 20 pixels along each
border. After cropping, the videos are resized to the input size
expected by the model. Training and model evaluations were
performed on a NVIDIA Titan V GPU with 12 GB RAM.

E. Evaluation

The error is defined as the difference between the time of
a labeled event E and a detected event Ê, either ED or ES.
Using the notation of [13], the MAE in frames is denoted the
average frame difference (aFD),

aFD =
1

N

N∑
1

|E − Ê|, (1)

where N is the number of events in the dataset. The mean
(µe) and standard deviation (σe) of the error is also presented
in milliseconds (ms).

In order to evaluate if the model is invariant to the cardiac
cycle starting point, a variable number of additional frames are
included at the beginning and end of the sequence. For each

video in the test set, results are measured with 0%, 33% and
66% of the duration between the labeled ED and ES included
at the beginning and end of the input data. The model output
for the included frames are then discarded as there is no ground
truth for these frames.

III. RESULTS

Table I shows the resulting performance on the 100 patients
in the test set. Three of the labeled EDs and ESs are not
detected by the model for the A2C view, due to the event
occurring near the first or last frames of the input. More than
one detection of the same event occur three times for ED, and
six times for ES. In all these cases, inspection reveals that
the data is from a non-standard view or noisy. These cases
are thus excluded in the result metrics. Fig. 2 shows a patient
from the dataset along with labeled and detected events, while
Fig. 3 shows the model output for the patient.

TABLE I
ERRORS OF DETECTED ED AND ES RELATIVE TO LABELED ED AND ES

View Event aFD µe(ms) σe(ms)
A2C ED 1.40 -5.68 35.8

ES 1.25 -1.94 29.9
A4C ED 1.63 0.50 29.8

ES 1.71 0.60 37.8

Table II shows the model compared to results reported in [14]
for other deep learning approaches.

TABLE II
COMPARISON TO METRICS REPORTED IN [14] ON THE A4C VIEW

Model aFD (ED) aFD (ES)
CNN + LSTM [13] 6.3 7.3
ResNet + LSTM [14] 3.7 4.1
3D CNN + LSTM 1.6 1.7

The time used to predict a single video consisting of 30 frames
is measured 100 times and averaged. This resulted in (30± 2)
ms used on average for predicting 30 frames.

IV. DISCUSSION

The 3D CNN is able to detect both ED and ES accurately
both for A4C and A2C views, as seen in Table I. This suggests
that the network has learned general features for both cardiac
phases, such as movement of the atrioventricular valves and
the contraction / relaxation of the myocardium. The model
is suited for learning these features, as the 3D convolutional
layers are able to learn motions between adjacent pixels. A 3D
CNN alone might result in a noisy output, due to the noisy
input data. This is where the LSTM layers can do a good job
of filtering the CNN output. There are few visible difference
between the labeled and detected ES frame in Fig. 3, and the
most noticeable difference between the labeled and detected
ED frames is the slightly more closed mitral valve for the
labeled ED. As seen from Fig. 3, the model output closely
resembles a square wave corresponding to systole and diastole



Fig. 2. Example input sequence (apical four-chamber) along with the labeled frames (ED, ES) and frames detected by the model (ÊD, ÊS).

Fig. 3. Output of the model on the sequence shown in Fig. 2. The model
output, y, is close to 1 for frames corresponding to the diastole phase and 0
for frames in systole. ED and ES is detected as frames where the y crosses
0.5.

frames, with only a few noticeable dips, showing how well
the model separates between systole and diastole. As seen in
Table II, the aFD is less than half of [14]. Comparing the
performance must however be performed with caution, due to
the models being evaluated on different datasets.

An issue is that the labels are not guaranteed to be correct.
Determining the exact moment of ED and ES can be difficult
for a human annotator due to small differences between
consecutive frames. These errors increase as the sampling rate
increases. Therefore, it would be interesting to compare the
variability of human annotators.

Frequent pooling and few convolutional kernels ensures that
the model runs efficiently. It also has a regularization effect,
as a small network is less likely to overfit to the training data.
The approach has shown to work using a variable number of
input frames, instead of limiting the input to a fixed number of
frames. This means that the model can operate on an arbitrary
long input sequence, and is not restricted to using a single heart
cycle as input. Thus, the method may be used to automatically
extract heart cycles when considering the distinct differences
between output for diastole and systole frames.

V. CONCLUSION

In this paper, a novel method for detecting cardiac events
in echocardiography using deep learning was proposed. A 3D
CNN was employed followed by recurrent layers to facilitate
the learning of spatio-temporal features. State-of-the-art results
are achieved on a large dataset, which indicate that the chosen
components enhances the solution of the task.
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