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Abstract—Supervised learning for 3D left ventricle (LV) ultra-
sound segmentation is difficult due to the challenges of acquiring
large amounts annotated data. In this work, pre-training on
a weakly labeled dataset, combined with augmentations and
fine-tuning on a limited dataset using a straightforward 3D
convolutional U-net type neural network was investigated. The
results indicate that an accuracy close to both state-of-the-art
and inter-observer can be achieved with such an approach. The
resulting neural network was highly efficient (17 ms on laptop
GPU) and was used to create a real-time application for fully
automatic LV volume and ejection fraction measurements over
multiple heartbeats to enhance practical use in the echo lab.

I. INTRODUCTION

Deep learning is state-of-the-art for left ventricle (LV)
segmentation in both 2D and 3D ultrasound, but requires
large amounts of annotated data. Annotating 3D ultrasound
data is complicated and highly time consuming, and only a
small dataset is publicly available from the CETUS MICCAI
challenge held in 2014 [1], [2].

After the 2014 CETUS challenge, several groups have used
deep convolutional neural networks (NN) to segment the LV
in 3D ultrasound. Typically fully convolutional 3D encoder-
decoder (e.g. U-net) type architectures have been used with 3D
convolutions. To deal with the limited amount of data, Oktay
et al. [3] used in 2017 an autoencoder trained on anatomically
correct LV shapes. The autoencoder was then used to guide
the training of a segmentation network on limited data. While
this method can guide a NN to segment more anatomically
correct shapes, it does not guarantee anatomically correct
shapes. This method was called ”Anatomically Constrained
Neural networks (ACNN)”, and although it doesn’t require
a large ultrasound dataset, it still requires a large dataset of
anatomically correct LV shapes. Dong et al. [4] presented in
2018 a method called VoxelAtlasGAN which uses a trained
conditional generative adversional network (GAN) to guide
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the segmentation. The generator of the GAN is used as an
atlas which is deformed and used to generate the output
segmentation. This method was later improved in [5] and
named AtlasNet.

In this work, we investigated the possibility of combining an
initial automatic non-machine learning method to generate 3D
annotations for pre-training, and a limited manually annotated
dataset with image augmentation techniques for fine-tuning.
Further, we aimed to develop a real-time 3D NN and appli-
cation for automatic LV volume and ejection fraction (EF)
measurements to enhance practical use in the echo lab.

II. METHODS

A. Dataset and annotation

The public CETUS 3D ultrasound LV segmentation dataset
was used [2]. This dataset consists of 3D ultrasound recordings
from 45 patients using three different ultrasound scanners.
In this dataset, only annotations of 15 of the patients were
available. And they are only annotated at end-diastole (ED)
and end-systole (ES) frames resulting in a total of 30 annotated
volumes, while is quite small for training and testing.

To deal with the lack of annotated volumes, an automatic
non-machine learning Kalman filter method (CETUS 2014,
rank 2) [6] was used to segment the LV for every frame of
all 45 3D recordings resulting in 1157 annotated volumes.
This weakly annotated dataset was used to pretrain the neural
network.

B. Neural network architecture

A fully convolutional encoder-decoder U-net type network
was used. The network uses 2×2 max pooling in the encoder
stage, and 2 × 2 repeat upsampling in the decoder stage.
Each level has 3D convolution layers with ReLU activation
and cross-over connections. The input and output size of the
network was 64×64×64. The input/output image size impacts
the number of parameters and thereby the inference runtime,
and was thus kept small to facilitate real-time deployment. The
network has 2.5 million parameters, just 0.5 million parameters
more than the 2D equivalent for LV segmentation used in [7].



Fig. 1. Photo of the real-time 3D LV segmentation and ejection fraction application in use. 3D ultrasound volumes are streamed from a GE Vivid E95
scanner to a laptop. The application uses the trained neural network to perform segmentation, which can be seen as a green overlay on the ultrasound image.
The 3D mesh at the right is extracted from the segmentation using marching cubes surface extraction on the GPU. The green curve at the bottom is the LV
volume over time. The blue and red vertical lines are the estimated ED and ES time points. From the LV volume curve the ejection fraction is calculated and
averaged over multiple heartbeats.

C. Training

The NN was pretrained using the weakly automatic anno-
tated dataset, and fine-tuned on the expert annotation of 15
patients. The network was trained with batch size 4 and a
Dice loss function.

To further avoid overfitting due to the limited dataset, the
following random image augmentations were applied during
training:

• Gamma intensity transformation
• Rotation around the depth axis
• Depth cropping
• Elastic deformation

D. Real-time application

A real-time application was created using the FAST frame-
work1 [8], [9]. The application streams 3D ultrasound data in
real-time from a GE E95 ultrasound scanner over an ethernet
connection. The ultrasound data is processed with the NN,
and the segmentation is displayed and used to calculate the
LV volume. The LV volume is plotted over time, and used to
estimate ED and ES as the time with maximum and minimum
LV volume. Using the ED and ES volume, the ejection fraction
is calculated and averaged over multiple heart beats as shown
in Fig. 1.

Fig. 2. Median and worse case segmentation in terms of Dice score on the
CETUS dataset with the proposed method.

III. RESULTS

In order to properly test the method with the very limited
ground truth data, leave-one-subject-out cross-validation was
used, which resulted in 15 models. Two random patients were
used for validation and thus selecting the final model during
training. The Dice scores were calculated for both ED and ES
with and without pre-training and is summarized in Table I.
The table also includes the inter-observer variability measured

1https://fast.eriksmistad.no
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TABLE I
LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION RESULTS ON THE 15 PATIENTS CETUS DATASET WITH MEAN DICE SCORE AND HAUSDORFF DISTANCE

IN MILLIMETERS. REPORTED INTER-OBSERVER AND ACCURACY FROM RELATED WORK AT THE BOTTOM FOR COMPARISON.

Method Dice (ED) Dice (ES) Hausdorff (ED) Hausdorff (ES)

No Pre-training 0.919± 0.024 0.867± 0.092 8.48± 4.01 9.91± 10.31
With Pre-training 0.933± 0.027 0.909± 0.057 7.75± 4.41 6.31± 1.81

Inter-observer (CETUS) [2] 0.931± 0.021 0.920± 0.021 4.70± 1.27 4.70± 1.15
ACNN 2017 [3] 0.912± 0.023 0.873± 0.051 6.96± 1.75 7.75± 2.65
VoxelAtlasGAN 2018 [4] 0.953± 0.019 7.26± 2.3
AtlasNet 2020 [5] 0.97± 0.012 5.6± 1.35

on the CETUS dataset between three experts, and the ACNN
method [3] which was also validated on the CETUS dataset.
Note however, that since the CETUS challenge evaluation
platform has been offline for a while, the inter-observer,
ACNN and the proposed methods have not been evaluated on
the same subset of the CETUS dataset. Accuracy metrics from
the VoxelAtlasGAN/AtlasNet method by Dong et al. [4], [5]
which was tested on a small private dataset are also included
in the table.

With the proposed method, the segmentation accuracy was
within the inter-observer variability in ED with a Dice score of
0.933, while slightly lower for ES 0.909. Without pre-training
the Dice scores were lower: 0.919 and 0.867, thus indicating
that the proposed pre-training is useful. Fig. 2 shows examples
of median and worst case segmentation in terms of Dice score
on the CETUS 15 patients dataset with the fine-tuned models.

An inference runtime of 17 ms per volume was achieved
using FAST, NVIDIA TensorRT and a RTX 2080 laptop GPU
while at the same time streaming, visualizing and calculating
EF in real-time. The average frames per second is thus limited
by the slow network 3D image streaming.

IV. DISCUSSION

A major drawback of this study is the small size of the
dataset with ground truth annotations. Nevertheless, we argue
that the accuracy achieved with such a limited dataset is
intriguing, demonstrating that large amounts of data is not
necessarily needed to achieve good accuracy. Real-time tests
also seem to indicate that the models are not overfitted and
are able to generalize to new subjects and ultrasound scanners.
Clinically speaking this method and the real-time application
makes it possible to get fairly accurate volume and ejection
fraction measurements in just a few seconds which should
be very beneficial in a busy clinical practice. Future work
will include acquiring a large annotated dataset, which can
be used for further training and evaluation of the method
and including both the myocardium and the left atrium. The
CETUS challenge included a website were results could be
uploaded and evaluated on the ground truth annotations for all
45 patients. However, since this evaluation platform has been
offline for a while, we were only able to use the 15 patients
annotations which are still available for download and direct
comparison with other work is therefore difficult.

Comparing different methods in Table I, one can see that the
NN atlas methods of Dong et al. [4], [5] report a much better
Dice score than the proposed method, the ACNN method, as
well as inter-observer. Still, one has to keep in mind that they
have used a private dataset acquired with only one scanner,
while all the other methods in the Table are tested on the public
CETUS dataset where three different scanners have been used.
Thus, direct comparison of these accuracy scores is difficult.

V. CONCLUSION

Results showed that a simple 3D NN with accuracy com-
parable to state-of-the-art and inter-observer can be achieved
with very little ground truth data. The application was able
to measure and average EF automatically over several heart
beats in real-time, beneficial in the hectic echo lab.
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