2D left ventricle segmentation using deep learning
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Abstract—Automatic segmentation of the left ventricle (LV)
can become a useful tool in echocardiography. Deep convolutional
neural networks (CNNs) have shown promising results for image
classification and segmentation on several domains, however
CNNs seem to require a lot of training data. In this work,
CNNs are investigated for LV ultrasound image segmentation.
We study if the need for manual annotation can be reduced
by pretraining a CNN using a previously published automatic
Kalman filter (KF) based segmentation method. The results show
that a CNN is able to achieve similar accuracy to that of the
automatic method, by only training with generated data. The
dice similarity coefficient was measured to be 0.86 + 0.06 for
the CNN versus 0.87 + 0.06, while the Hausdorff distance was
better at 5.9 4+ 2.9 mm for the CNN versus 7.5 + 5.6 mm for
the KF method. In future work, this may enable CNNs to exceed
state-of-the-art with a small set of expert annotations for fine-
tuning.
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I. INTRODUCTION

Automatic segmentation of the left ventricle (LV) can
become a useful tool in echocardiography, for instance to pro-
vide automatic ejection fraction measurements or to initialize
deformation imaging algorithms.

There are many proposed methods for 2D left ventricle
segmentation, such as active contours, level sets, active shape
models and Kalman filter. A review of such methods was
conducted by Noble and Boukerroui [1]. Neural network
based approaches have also been proposed. Carneiro et al. [2]
proposed using deep belief networks to identify the LV region
of interest and adapt a spline to edges. Deep convolutional
neural networks have recently shown very promising results
for improving image classification and segmentation. These
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methods learn using only a set of input and output data, but
may require a large and representative amount of annotated
data to be successful. This means an expert has to draw the
LV border in potentially thousands of images, which is highly
tedious and time consuming. Oktay et al. [3] demonstrated the
use of these neural networks on 3D left ventricle segmentation.
They solved the issue of limited training data by regularizing
the training with an accurate anatomical 3D model created
from a large database of annotated cardiac magnetic resonance
images.

In this work, we investigate deep convolutional neural
networks for segmentation of the LV from 2D ultrasound
images. More specifically, we study if the need for manual
annotation can be reduced by pretraining a deep convolutional
neural network (CNN) using an automatic Kalman filter (KF)
segmentation approach as the teacher. The hypothesis is that
the CNN is able to achieve comparable accuracy with the KF
method.

II. METHODOLOGY

This section first describes the dataset and how it was pro-
cessed to generate training data for the neural network. Next,
a description of the neural network architecture and training
is provided. Finally, the evaluation procedure is described.

A. Dataset

Over 1,500 ultrasound recordings of 100 patients refer-
enced to the outpatient clinic was collected. These recordings
consisted of about 100,000 2D image frames acquired through
the apical window.

The recordings were processed with an automatic model-
based segmentation method [5] adapted to 2D. This segmen-
tation method models the left ventricle as a cubic hermite
spline. The spline may be translated, rotated and scaled, and
each control point may move independently to enable local
deformation. All these transformation state parameters are
estimated and predicted over time using a Kalman filter (KF).
The state is updated using edge detection measurements along
the normal of several points on the spline. This method outputs
a label image for each input ultrasound image frame. The
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U-net architecture [4]. Downward and upward arrows indicate downsampling and upsampling operations respectively. The straight filled arrows are

3 X 3 convolutions, and the dashed arrows are concatenation operations where a tensor is merged with another tensor. The number of features are doubled for

each downsampling, and halved for each upsampling.
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Fig. 2. The average dice score on fixed validation data versus the number
of patients used for training the neural network.

training dataset for the neural network consists of all the input
ultrasound images and the corresponding label images from
the KF segmentation method.

B. Neural network

A U-net neural network segmentation architecture was used
as shown in Fig. 1. This architecture has shown to be applica-
ble to multiple medical image segmentation problems [4]. The
first part of U-net consists of several convolutional layers and
downsampling steps while gradually increasing the number of
features. The second part perform multiple upsampling steps to
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Fig. 3. The average Hausdorff distance on fixed validation data versus the

number of patients used for training the neural network.

recover the original image resolution. To recover fine-grained
features that may be lost in the downsampling stage, cross-over
connections are used by concatenating equally sized feature
maps. The last part of U-net are the cross-over connection,
which are used to recover fine-grained features in the image
that may be lost in the downsampling stages. All convolutions
had a filter size of 3 x 3.

The network requires a fixed size input of 256 x 256 pixels,
thus all input ultrasound images and output segmentations from
the dataset were resized to this size. The pixel intensity of the
ultrasound images were rescaled to unit scale [0, 1]. The neural
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Ultrasound images annotated by an expert cardiologist. The expert segmentation contour is shown in green, the Kalman filter in red and the neural

network in blue. The four images to the left are the best cases, where the contours were closest to the expert annotation. The four images to the right show the

opposite, the worst cases.

network was implemented using Tensorflow and Keras [6]. For
the network training, stochastic gradient descent was used with
10 epochs, learning rate 0.01 and momentum 0.9.

C. Evaluation

For the evaluation, the segmentation accuracy of the model-
based Kalman filter method was compared to that of the trained
neural network. 13 of the 100 patients were randomly selected,
excluded from training and used for validation. 52 images from
these patient’s recordings where manually segmented by an
expert cardiologist.

The dice similarity coefficient D [7] was calculated to
measure the overlapping regions of the segmentation S and
the ground truth G.
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For the contour of the segmentation, the Hausdorff distance H
was calculated in millimeters.
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Here, d(i, G, S) is the distance from contour point ¢ in G to
the closest contour point in S. O and M are the number of
pixels on the contour of G and S respectively.

III. RESULTS

The dice similarity coefficient (DSC) and the Hausdorff
distance was calculated for the KF and CNN method. The

average DSC was 0.86 4= 0.06 for the KF and 0.87 4 0.06 for
the CNN. Thus, the CNN achieved comparable performance
to the KF by training it on output data from the KF. The
average Hausdorff distance, representing the maximum error,
was higher for the KF with 7.5+£5.6 mm, compared to 5.9£2.9
mm for the CNN. The DSC was observed to increase, and
the Hausdorff distance decrease when varying the number of
patients included in training as shown in Fig. 2 and Fig. 3.
Fig. 4 show 8 of the expert annotated images and the output
contour of the KF and the CNN.

The inference runtime of the network was 90+ 8 ms using
a CPU and 31 + 11 using a GPU, but may be reduced by
optimizing the network architecture and computation graph.

IV. DISCUSSION

The results show that a deep convolutional neural network
can learn to segment the left ventricle directly from another
segmentation algorithm. The DSC of each method is quite
similar, however for the Hausdorff distance the neural network
is actually performing better than the KF.

Ideally, we wish to improve on the accuracy of the KF
method, not just copy it. This may be done by first pretraining
the neural network using the proposed approach, and then
fine tune the network afterwards using a small number of
manual expert annotations. A pretraining approach for the U-
net architecture was proposed by Wiehman et al. [8]. This
approach may be applicable to other segmentation tasks and
image modalities.



It is a common belief that large amounts of data is required
for deep neural networks to learn a task. However, this seems
to depend on the task at hand. In the ImageNet challenge,
over one million images are used for training [9]. In this
challenge, the task is to classify ordinary color photographs as
one of one thousand classes. We argue that this task is much
more complex than the task of LV segmentation in ultrasound
images, as the image variation is much smaller. For the specific
task of left ventricle segmentation, it seems according to the
graphs in Fig. 2 and Fig. 3 that a neural network can learn
this task with a reasonable accuracy with less data than we
initially thought. Fig. 4 show that for the worst cases, the neural
network segmentation contour is less smooth and thereby less
anatomical correct. The KF avoids this by forcing the contour
spline to be smooth.

V. CONCLUSION

A convolutional neural network was trained using no man-
ual annotations, only an automatic segmentation method and
a large ultrasound dataset. The resulting network model was
able to achieve similar accuracy to the automatic segmentation
method. In future work, this may enable deep convolutional
neural networks to exceed state-of-the-art with a small set of
expert annotations for fine-tuning.
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