
International Journal of Computer Assisted Radiology and Surgery manuscript No.
(will be inserted by the editor)

FAST: framework for heterogeneous medical image
computing and visualization

Erik Smistad · Mohammadmehdi Bozorgi · Frank Lindseth

the date of receipt and acceptance should be inserted later

Abstract

Purpose Computer systems are becoming increasingly

heterogeneous in the sense that they consist of different

processors, such as multi-core CPUs and graphic pro-

cessing units (GPUs). As the amount of medical image

data increases, it is crucial to exploit the computational

power of these processors. However, this is currently dif-

ficult due to several factors, such as driver errors, pro-

cessor differences, and the need for low level memory

handling. This paper presents a novel FrAmework for

heterogeneouS medical image compuTing and visual-

ization (FAST). The framework aims to make it easier

to simultaneously process and visualize medical images

efficiently on heterogeneous systems.

Methods FAST uses common image processing program-

ming paradigms, and hides the details of memory han-

dling from the user, while enabling the use of all pro-

cessors and cores on a system. The framework is open-

source, cross-platform and available online.

Results Code examples and performance measurements

are presented to show the simplicity and efficiency of

FAST. The results are compared to the insight toolkit

(ITK) and the visualization toolkit (VTK), and show

that the presented framework is faster with up to 20

times speedup on several common medical imaging al-

gorithms.

Conclusions FAST enables efficient medical image com-

puting and visualization on heterogeneous systems. Code

Erik Smistad · Mohammadmehdi Bozorgi · Frank Lindseth
Dept. of Computer and Information Science
Norwegian University of Science and Technology
Sem Saelandsvei 7-9, NO-7491 Trondheim
Tlf.: +47 73594475
E-mail: smistad@idi.ntnu.no

Erik Smistad · Frank Lindseth
SINTEF Medical Technology. Trondheim, Norway.

examples and performance evaluations have demonstrated

that the toolkit is both easy to use, and performs better

than existing frameworks, such as ITK and VTK.

Keywords GPU · Parallel · Medical · Image ·
Computing · Visualization · Heterogeneous · OpenCL

1 Introduction

An increasing amount of medical image data is be-

coming available for any given patient today. Modern

image analysis techniques make it possible to extract

and visualize more information from the images. The

race for using the increasing amount of image data more

effectively is paramount for better diagnostics and ther-

apy in the future. Still, concurrent medical image com-

puting and visualization of both static and dynamic

real-time data is computationally expensive. In the ef-

forts toward improving computer assisted radiology and

surgery, this may entail that computational demanding

research methods that have been assessed to be quanti-

tatively better then existing methods (in terms of accu-

racy for example) can not be used in a routine clinical

setting due to time constraints.

Most modern computer systems are heterogeneous

in the sense that they consist of several different proces-

sors, such as multi-core CPUs and graphic processing

units (GPUs). These processors enable parallel process-

ing, which can accelerate many medical image comput-

ing tasks significantly [7,25]. The programming of this

hardware is, however, still difficult due to several fac-

tors. One factor is that the software needed to use the

This is a preprint. The final publication is available at
Springer via http://dx.doi.org/10.1007/s11548-015-1158-5

2 Erik Smistad et al.

hardware, such as GPU drivers and compilers, may con-

tain errors which are hard to debug. Also, the different

manufacturers may have interpreted the standards dif-

ferently. This forces programmers to do more debugging

and testing. Since the programmer can not change pro-

prietary software such as GPU drivers, the programmer

may even have to write separate code for different hard-

ware manufacturers and software versions. The result

is increased software development overhead and frag-

mented source code.

GPUs were originally programmed using shaders in-

tended for graphics rendering. Newer frameworks, such

as CUDA [18], enable general-purpose programming of

GPUs. The open computing language (OpenCL) [29]

is an open standard for parallel programming of het-
erogeneous systems. OpenCL enables parallel program-

ming of different processors such as multi-core CPUs

and GPUs. These GPU programming tools expose the

programmer to several hardware details. For instance,

most GPUs have their own memory that is separate

from the computer’s main memory. This memory is of-

ten divided into several different memory spaces such

as global, texture and constant memory [19]. Thus, the

programmer has to explicitly move data between the

different memories during execution.

In this article, we propose a framework called FAST

(FrAmework for heterogeneouS medical image compuT-

ing and visualization). This framework aims to make

it easier to do efficient processing and visualization of

medical images on heterogeneous systems. The frame-

work is open-source and available online. FAST is also

cross-platform, supporting Windows, Mac OS X and

Linux. The authors believe that in order to achieve sat-
isfactory performance in the more computational de-

manding medical applications, the framework has to

cover the entire pipeline from reading and streaming

data to visualizing the result on the screen. Thus, the

framework currently includes methods for:

– Reading, writing and streaming image data in dif-

ferent formats.

– Image processing algorithms such as filtering, seg-

mentation and registration.

– Surface mesh extraction and rendering.

– Multi-volume and slice rendering.

The framework aims to be easy to use by utilizing com-

mon programming paradigms from popular toolkits,

such as the insight toolkit (ITK) and the visualization

toolkit (VTK), and hiding the details of memory han-

dling from the user. Also, the framework has many tests

and benchmarks which enable the user to make sure

http://github.com/smistad/FAST/

that all the hardware and software are working prop-

erly, and gives the performance and accuracy necessary

for a whole range of medical image processing appli-

cations. We acknowledge that there exist many medi-

cal image computing algorithms created using ITK and

VTK. The framework therefore supports interoperabil-

ity with these frameworks, such that image data can be

shared and pipelines from FAST, ITK and VTK can

be linked. This may ease the integration of FAST into

existing applications.

1.1 Related work

ITK [9,10] and VTK [21,12] are two of the most com-

monly used frameworks for medical image analysis and

visualization. ITK contains several image processing al-

gorithms used in the medical domain, while VTK is

mostly used for visualization. Several of the image pro-

cessing filters in ITK and VTK support multi-threading

for execution on multi-core CPUs. In this multi-thread-

ing model, the input image is split among a set of

threads. Each subimage is processed individually and

the result is stitched together. These frameworks were

not initially created with support for GPU acceleration,

except GPU-based rendering. However, extensions have

been proposed to enable such support [2,11]. The cur-

rent version of ITK (4.6) includes GPU implementa-

tions of some algorithms such as thresholding, smooth-

ing and optical flow registration. However, these are

implemented as separate modules which are only avail-

able if compiled with a specific flag.

The open computer vision library (OpenCV) [20]

is another popular image processing and visualization
framework. However, this framework focus primarily on

2D image processing and lack several features that are

important in the medical imaging domain such as 3D

image processing, medical image formats and surface

extraction. Still, OpenCV was designed for computa-

tional efficiency and with a strong focus on real-time

applications. Several algorithms in OpenCV are imple-

mented for the GPU using OpenCL.

While these frameworks provide accelerated process-

ing more as an extension and as an optional feature,

the FAST framework presented in this article has been

designed with heterogeneous accelerated processing in

mind from the start and it is part of the core of the

framework. We believe this will result in a framework

that is faster and easier to use.

MeVisLab [13,15] is a software which focus on rapid

prototyping of medical image software using a visual

programming interface. It also supports integration with

ITK and VTK and has support for multi-threading.

FAST on the other hand, focus on high performance

FAST: framework for heterogeneous medical image computing and visualization 3

Hardware – GPUs and CPUs

OpenCL

Eigen

Data (2.2) Importers/Exporters (2.3) Streamers (2.4)

Algorithms (2.5) Visualization (2.6)

Drivers

Tests (2.7) Benchmarks (2.8)

OpenGL

Qt

Application

F
ra

m
ew

or
k

co
re

Li
br

ar
ie

sBoost GLEW

Fig. 1 Block diagram of the framework. The numbers indi-
cate which section describes the different parts of the frame-
work.

heterogeneous medical image computing and visualiza-

tion and has currently no visual programming interface.

One framework that aims to aid the development of

image processing algorithms for different GPUs is the

Heterogeneous Image Processing Acceleration Frame-

work (HIPAcc) [14]. However, HIPAcc focus on the de-
sign of image processing algorithms and does not in-

clude visualization and registration.

1.2 Outline

The next section describes the details of the framework.

The result section presents code examples and perfor-

mance benchmarks of common medical image comput-

ing pipelines on different systems. Finally, a discussion

and conclusion is presented.

2 Methodology

The FAST framework consists of five main layers, as

illustrated in Fig. 1. The bottom layer is the actual

hardware, i.e. the CPUs and GPUs. The second layer

are the drivers for this hardware, which are provided by

the hardware manufacturers. Next is the library layer,

which consists of several libraries that are needed in the

framework. The libraries in this layer are:

– Open Computing Library (OpenCL) - An open

standard for parallel programming on heterogeneous

systems, including multi-core CPUs, GPUs, and FP-

GAs. It is supported by most processor manufactur-

ers including AMD, NVIDIA and Intel.

– Open Graphics Library (OpenGL) - A cross-

platform library for visualization.

– GL Extension Wrangler (GLEW) - A library

for handling OpenGL extensions.

– Eigen - A fast cross-platform linear algebra library.

– Qt - A cross-platform graphical user interface (GUI)

toolkit.

– Boost - A C++ utility library.

The next layer is the core of the framework, which is

split into several groups:

– Data (2.2) - Objects for data (both static and dy-

namic) such as images and meshes, which enables

the synchronized processing of such data on a set of

heterogeneous devices.

– Importers/Exporters (2.3) - Data import and

export objects for different formats such as MetaIm-

age (.mhd), raw, ITK and VTK.

– Streamers (2.4) - Objects that enable streaming

of data.

– Algorithms (2.5) - A set of commonly used filter-

ing, segmentation and registration algorithms.

– Visualization (2.6) - A set of renderers such as

image, volume, slice and mesh renderers.

– Tests (2.7) - A set of tests for the framework which

ensures that all parts of the framework are working

properly.

– Benchmarks (2.8) - Mechanisms for measuring,

assimilating and reporting the performance of all

operations in the framework.

The last layer is the application layer. The frame-

work may be both a stand-alone application, which en-

ables benchmarking and tests of a heterogeneous sys-

tem, and an external library for other medical image

computing applications.

The rest of this section will describe each part of

the framework in more detail, but first the execution

pipeline of the framework is described.

2.1 The execution pipeline

FAST uses a demand-driven execution pipeline similar

to what is used in ITK and VTK. This entails that

each processing step is first linked together to form a

pipeline, that is not executed until some object calls the

update method. This can be done in two ways:

– Explicitly by calling the update method on an ob-

ject in the pipeline.

4 Erik Smistad et al.

– Implicitly by a renderer which calls update on its

input connections several times per second.

The pipeline consists of process objects, which extend

the abstract base class ProcessObject . A process object

is an object that performs processing and may have

zero, one or several parent process objects. Most pro-

cess objects produce data objects which extend the ab-

stract base class DataObject . Similar to the newest ver-

sion of VTK (version 6), FAST uses a pipeline where

the data objects are not explicitly part of the pipeline.

Fig. 2 illustrates a simple pipeline with these two types

of objects and how they are connected.

Data importer

Data object

Processing

Data exporter

Data object

Rendering

Fig. 2 A simple pipeline with process (blue/bright) and data
objects (orange/dark). The arrows indicate how the objects
are connected.

Data objects have an internal timestamp. The times-

tamp is always updated when the data is changed. Each

process object has a list of timestamps for each connec-

tion. These timestamps represent which version of the

data objects were used the last time the process ob-

ject was executed. In addition, each process object has

a flag indicating whether it has been modified or not.

This could be a parameter or input change.

When the update method is called on a process ob-

ject, it will first call update on all its parent objects.

Thus update will be called on all objects backwards in

the pipeline until a process object with no input connec-

tions is encountered (e.g. an importer object). A process

object will re-execute by calling its execute method, if it

is modified or one of its input connections have changed

timestamps. Thus each process object will implement

its own execute method while the update method is

the same for each process object.

2.2 Data management

Throughout this article, we will use the OpenCL ter-

minology and refer to a processor with its memory as a

device, and the main CPU as the host.

Host (CPU)

Memory

OpenCL Device (CPU/GPU)

Memory

OpenCL Device (CPU/GPU)

Memory

OpenCL Device (CPU/GPU)

Memory

Pointers to where the
data is stored

Data object

Fig. 3 A data object (e.g. an image) has pointers to all the
devices where the data is stored. Using the OpenCL termi-
nology, a device is a processor with its memory, and the host
is the main CPU.

Data organization and synchronization is one of the

key components in the proposed framework. Image data

is represented by an object called Image which is used

for both 2D and 3D image data. These image objects

represent an image on all devices, and its data is guar-

anteed to be coherent on any devices after being altered.

Thus, if an image is changed on one device it will also be

changed on the other devices before the data is required

on those devices. The same applies for other types of

data like meshes where an object called Mesh is used to

represent a mesh on all devices (see Fig. 3). Dynamic

data, such as temporal 2D and 3D image data, is also

supported. This is discussed in further detail in section

2.4 on data streaming.

2.2.1 Data access

Two forms of data access are possible in the framework:

1) Read-only and 2) Read and write. The general rule

is that several devices can perform read operations on

a data object at the same time. However, if a device

needs to write data, only that device can have access to

the data object at that time. This policy ensures data

coherency across devices. Thus, if a device wants to

write to an image, it has to wait for all other operations

on that image to finish. When a device is writing to an

image, no other devices can read or write to that image.

To enforce this policy, several DataAccess objects

are introduced for each data object. For instance, in

OpenCL, an image can be represented either as a buffer

(i.e. a regular array) or as an image/texture. Thus there

exist one OpenCLBufferAccess object and one Open-

CLImageAccess object to facilitate such access to image

data. From these objects an OpenCL Image or Buffer

object can be retrieved, which is needed to perform

OpenCL computations on the image. Access to the im-

FAST: framework for heterogeneous medical image computing and visualization 5

age from the main memory can also be requested for

doing processing on the CPU using C++. The DataAc-

cess objects also have methods for releasing the access,

thus enabling other devices to perform write operations

on the image. The access will also be released in the de-

structor of this object to avoid deadlocks. When the

access is released, the OpenCL Image/Buffer object

pointer is invalidated to ensure that the program can

no longer manipulate the data. However, this does not

delete the actual data on the device. When write access

to an object is requested, the framework will check that

any previous access objects have been released.

2.2.2 Data change

Every time data is changed on a device, the change

should be reflected on the other devices as well. How-

ever, this doesn’t have to be done immediately. Updat-

ing the data can be done the next time the data is

requested on another device. This is often referred to

as lazy loading. The benefit of lazy loading is that the

number of data transfers can be reduced. However, the

drawback is that there will be a transfer cost the next

time the data is requested on a device which doesn’t

have the updated data.

Thus, each data object has a set of flags indicating

whether the data (in the form of OpenCL buffers, im-

ages and C++ pointers) is up to date for each device.

When one device has changed some data, these are set

to false for all devices except the device in which the

change was performed. Next time the data is requested

on a device, the flag is checked and if it is false, a data

transfer will start and the flag will be set to true for

that device.

2.2.3 Data removal

The amount of memory available on a system as well as

on graphic cards are limited, and may not be enough

when working on large datasets. Thus it is crucial to

remove data that is not needed anymore. Data may be

deleted explicitly by the programmer, however, this is

a burden for the programmer and may easily be for-

gotten. After the entire pipeline has been defined by

the programmer it is known which process objects need

which data objects as input. Thus it is possible to delete

a data object after all the process objects that use this

data object have finished execution. This requires each

process object to retain and release the data objects

when they are defined as input and when the process

object is finished using it. To facilitate this, each data

object has a reference counter and when it reaches zero,

the data is deleted.

2.2.4 Data types

Medical images are represented in different formats.

Some common examples are: Ultrasound (unsigned 8

bit integer), CT (signed/unsigned 16 bit integer) and

MR (unsigned 16 bit integer). The framework currently

supports the following data formats for images:

– TYPE FLOAT - 32 bit floating point number

– TYPE UINT8 - 8 bit unsigned integer

– TYPE INT8 - 8 bit signed integer

– TYPE UINT16 - 16 bit unsigned integer

– TYPE INT16 - 16 bit signed integer

An image can also have multiple channels, or compo-

nents, and currently 1-4 channels are supported.

2.3 Data import and export

Data can be imported to and exported from the frame-

work in several different forms such as:

– MetaImage file (.mhd, .raw and .zraw)

– Image file (.jpg, .png etc.)

– ITK image object

– VTK image object

– VTK file (.vtk)

In the future, the framework will also support com-
mon data formats such as DICOM [16] and NIfTI [17].

2.4 Data streaming

Streamers are process objects that provide access to dy-

namic data. This can for instance be real-time images

from an ultrasound probe or a series of images stored

on disk. The output of streamer objects is a Dynam-

icData object, which has a method for retrieving the

current frame in the stream. The DynamicData objects

can contain one of several types of data such as images

or meshes. The streamers read data into the Dynamic-

Data object in a separate thread so that processing and

data streaming can be performed concurrently. Stream-

ers can use one of three different streaming modes:

– STREAMING MODE NEWEST FRAME ONLY

This will only keep the newest frame in the Dynam-

icData object.

– STREAMING MODE PROCESS ALL FRAMES

This will keep all frames in the DynamicData ob-

ject, but will remove the frame from the object after

it has been processed.

– STREAMING MODE STORE ALL FRAMES

This will store all frames in the DynamicData ob-

ject.

6 Erik Smistad et al.

For the second of these streaming modes it is also im-

portant to limit the size of the dynamic data buffer so

that the streaming does not use up all memory. With

this mode it is therefore possible to set the maximum

size of the dynamic data buffer. A producer-consumer

model is used to synchronize the use of the data.

The data and process objects are designed so that it

is easy to accept both static and dynamic data as input

and output to an algorithm.

2.5 Algorithms

Algorithms are implemented in the framework as pro-

cess objects and thus have to override the execute method.

Currently only a few filtering, segmentation and reg-

istration algorithms have been implemented such as

Gaussian smoothing, seeded region growing [1], thresh-

olding, skeletonization [8], iterative closest point [3] and

surface extraction (marching cubes) [23]. All algorithms

support parallel processing on CPUs and GPUs. In the

near future, we plan to implement and integrate sev-

eral other algorithms such as level set segmentation,

Kalman filter object tracking [28], gradient vector flow

[22,27] and tube detection filters [24,26].

2.6 Visualization

2.6.1 Graphical user interface and rendering

Qt is used in FAST as the graphical user interface. Qt

is cross-platform, supports multi-threading, direct ren-

dering from OpenGL and event handling of keyboard
and mouse input. A visualization window in the FAST

framework can have multiple views, and each view can

have multiple renderers. Windows are implemented us-

ing Qt’s QWidget class, while the View extends the

QGLWidget, which is a widget that may be rendered

to by OpenGL. The FAST renderers do the actual ren-

dering. These renderers and the event handling is exe-

cuted in one thread, while the pipeline is run in another

thread. This enables concurrent visualization, camera

movement and pipeline execution. Five different types

of renderers are currently available in FAST:

– Image renderer - For displaying 2D images.

– Slice renderer - Extracts and displays an image from

a volume in an arbitrary plane using trilinear inter-

polation.

– Mesh renderer - Renders a mesh.

– Volume renderer - Creates an image of a volume

using ray casting [4].

– Point renderer - Renders a list of points.

Root A

Image A Image B

Mesh A Mesh B

Root B

Image C

TIA TIB TIC

TMBTMA

Fig. 4 An example of a scene graph. Images A and B are
registered because they share a root node. Image C is not
registered to any other data. Each edge between the nodes
has a transformation object. This transformation determines
how data is positioned relative to other nodes. Meshes A and
B are dependent on image A. Thus, moving image A will also
move these meshes.

2.6.2 Scene graph

Correct placement of images and geometry in the visu-

alization scene is important. FAST uses a scene graph

for this purpose. In this directed graph, each data object

has a node. All data nodes are connected to a parent

node, which can be another data node or a root node.

Each edge between the nodes has a transformation ob-

ject. This transformation determines how data is posi-

tioned relative to other nodes. Fig. 4 shows an example

of a scene graph with three images and two meshes. The

images A and B share a root node, and are therefore

registered. Image C is not registered to any other data.

Image A is placed in the visualization scene by applying

the transformation TIA to the image. Similarly, image

B uses the transformation TIB . Since these images are
registered, the corresponding voxel position in image B

of a voxel position in image A can be determined by

first applying the transformation TIA, and then the in-

verse transformation of image B T−1
IB . The meshes A

and B are related to image A. These meshes may for

instance be the result of a segmentation of image A.

Mesh A is placed in the visualization scene by first ap-

plying the transformation from the mesh to image A

TMA, and then the transformation from image A to the

root node TIA. Thus, if image A is moved in the scene,

the meshes A and B are also moved.

When an image or mesh is created, a corresponding

data node is created in the scene graph and connected

to a root node. However, if the data is created from

another data object, it is connected to the data node

of that data object instead. For instance, the surface

extraction algorithm will connect the resulting mesh

to the image used to create the mesh. A visualization

of an image and a segmented surface mesh using the

scene graph is illustrated in Fig. 6. When importing

FAST: framework for heterogeneous medical image computing and visualization 7

a MetaImage, any transformation information such as

translation and rotation is read from the MetaImage

file (.mhd) and put in the scene graph.

2.7 Tests

As much as possible of the framework should be covered

by unit and system tests. This enables a user to ensure

that the framework is working correctly on the user’s

current software and hardware configuration. The au-

thors know by experience that new drivers, compilers

and libraries can introduce errors that may stop the

framework from working properly. These tests enable

a user to quickly detect these problems. The tests are

written using the Catch C++ testing framework [5].

Realistic test data is needed to test the framework prop-

erly, and is therefore provided for download.

The framework is available on the open-source com-

munity website GitHub. Each time a user contributes

to the project, three different computers will execute

all tests with the new code and verify that everything

is working. These machines use all the supported oper-

ating systems Windows, Mac OS X and Ubuntu Linux

and processors from Intel, AMD and NVIDIA. Thus,

the source code of the framework is tested continuously

on several hardware and software configurations. We

believe this is needed in order to ensure the stability of

FAST.

2.8 Benchmarks

Users may also want to test how well their current setup

performs and see how performance changes when soft-

ware and hardware changes are introduced. For this

purpose benchmarks are provided, which are tests of

different pipelines in which performance is measured

and reported.

3 Results

This section first presents some examples of how the

framework can be used. These examples are provided

to show how easy it is to set up pipelines in FAST.

Next, the performance of the framework is measured

and compared to that of ITK and VTK.

3.1 Code examples

The first example is a simple pipeline of four steps: im-

port 3D image from disk, Gaussian smoothing, surface

http://github.com/smistad/FAST/wiki/Test-data

extraction and rendering. The result is shown in Fig. 5.

The steps of the pipeline are linked together using the

getOutputPort and setInputConnection methods of the

process objects. This is the same method used by ITK

and VTK. The ::pointer types are smart pointers which

are created with the New method. These pointers re-

duce memory problems such as memory leakage.

Example 1: Pipeline A

// Import image
ImageFileImporter :: pointer importer =

ImageFileImporter ::New();
importer ->setFilename("image.mhd");

// Blur image with Gaussian smoothing
GaussianSmoothing :: pointer smoothing =

GaussianSmoothing ::New();
smoothing ->setInputConnection(

importer ->getOutputPort ());
smoothing ->setStandardDeviation (1.0);

// Extract surface mesh with marching cubes
SurfaceExtraction :: pointer extraction =

SurfaceExtraction ::New();
extraction ->setInputConnection(

smoothing ->getOutputPort ());

// Render surface mesh
MeshRenderer :: pointer meshRenderer =

MeshRenderer ::New();
meshRenderer ->addInputConnection(

extraction ->getOutputPort ());

// Render slice
SliceRenderer :: pointer sliceRenderer =

SliceRenderer ::New();
sliceRenderer ->addInputConnection(

smoothing ->getOutputPort ());
sliceRenderer ->setSlicePlane(PLANE_X);

// Create a window , attach the renderers and start
pipeline

SimpleWindow :: pointer window = SimpleWindow ::New();
window ->addRenderer(meshRenderer);
window ->addRenderer(sliceRenderer);
window ->start();

This pipeline can easily be changed from using a single

static image as input to a stream of images by only sub-

stituting the Importer object with a Streamer object.

The rest of the pipeline is the same. Example 2 shows

how a ImageFileStreamer object is created to stream

a series of MetaImages from disk. The streamer object

uses a filename format to find files. The hash sign (#)

is replaced by an integer index which changes for each

image that is loaded. It is possible to change the start

index and step which are 0 and 1 respectively by de-

fault. The streamer stops when no more images with

the format are found.

Example 2: Streaming images

ImageFileStreamer :: pointer streamer =
ImageFileStreamer ::New();

streamer ->setFilenameFormat("image_frame_ #.mhd");

The user may want to specify which device should be

used as the default device. This is done using the De-

viceManager object as shown in Example 3. However,

each process object may override this if desired.

8 Erik Smistad et al.

Fig. 5 Result of pipeline A in Example 1. A 3D ultrasound
image is first smoothed. Then, surface extraction is used to
extract a surface mesh from the smoothed image. Finally, a
slice of the smoothed 3D image is rendered together with the
surface mesh.

Fig. 6 Result of pipeline B in Example 4. Region growing
is used to segment the bone structure from a CT scan. A
surface mesh is extracted from the segmentation and rendered
together with a slice of the CT scan. The scene graph is used
to correctly position the two data objects.

Example 3: Set the default device to be a GPU

DeviceManager :: setDefaultDevice(
DeviceManager :: getOneGPUDevice ());

The next example shows another pipeline. This pipeline

performs region growing segmentation on an image, ex-

tracts the surface mesh of the segmentation, and finally

renders the mesh and a slice of the input image. The

result can be seen in Fig. 6.

Example 4: Pipeline B

// Import image
ImageFileImporter :: pointer importer =

ImageFileImporter ::New();
importer ->setFilename("CT -Abdomen.mhd");

// Segment image with region growing
SeededRegionGrowing :: pointer segmentation =

SeededRegionGrowing ::New();
segmentation ->setInputConnection(

importer ->getOutputPort ());
segmentation ->addSeedPoint (261 ,284 ,208);
segmentation ->setIntensityRange (150, 5000);

// Extract surface mesh with marching cubes
SurfaceExtraction :: pointer extraction =

SurfaceExtraction ::New();
extraction ->setInputConnection(

segmentation ->getOutputPort ());

// Render slice plane
SliceRenderer :: pointer sliceRenderer =

SliceRenderer ::New();
sliceRenderer ->setPlaneToRender(PLANE_Z);
sliceRenderer ->setIntensityWindow (1000);
sliceRenderer ->setIntensityLevel (0)
sliceRenderer ->setInputConnection(

importer ->getOutputPort ());

// Render surface mesh
MeshRenderer :: pointer meshRenderer =

MeshRenderer ::New();
meshRenderer ->addInputConnection(

extraction ->getOutputPort ());

// Create a window , attach the renderers and start
pipeline

SimpleWindow :: pointer window = SimpleWindow ::New();
window ->addRenderer(sliceRenderer);
window ->addRenderer(meshRenderer);
window ->start();

Pipeline C imports a 2D image and performs binary

threshold segmentation. The segmentation is skeletonized

and finally rendered using the ImageRenderer as shown

in Fig. 7.

Example 5: Pipeline C

// Import image
ImageFileImporter :: pointer importer =

ImageFileImporter ::New();
importer ->setFilename("image.png");

// Segment image with thresholding
BinaryThresholding :: pointer thresholding =

BinaryThresholding ::New();
thresholding ->setInputConnection(

importer ->getOutputPort ());
thresholding ->setLowerThreshold (0.5);

// Skeletonize the segmentation
Skeletonization :: pointer skeletonization =

Skeletonization ::New();
skeletonization ->setInputConnection(

thresholding ->getOutputPort ());

// Render image
ImageRenderer :: pointer renderer =

ImageRenderer ::New();
renderer ->addInputConnection(

skeletonization ->getOutputPort ());

// Create a window , attach the renderers and start
pipeline

SimpleWindow :: pointer window = SimpleWindow ::New();
window ->addRenderer(renderer);
window ->start();

FAST: framework for heterogeneous medical image computing and visualization 9

Fig. 7 Result of pipeline C in Example 5 where an image of
the retina blood vessels is thresholded, and skeletonized using
iterative thinning.

Fig. 8 The two point sets of pipeline D in Example 6 before
and after the iterative closest point (ICP) algorithm is used
to register the two sets.

The next pipeline first imports two point sets from VTK

files (.vtk). The PointSet object is a data object, which

only contains a set of points. These point sets are then

registered using the iterative closest point (ICP) algo-

rithm [3]. Finally, the point sets are rendered using the

PointRenderer (see Fig. 8).

Example 6: Pipeline D

// Import two point sets
PointSetImporter :: pointer importerA =

PointSetImporter ::New();
importerA ->setFilename("pointsA.vtk");
PointSet :: pointer pointsA =

importerA ->getOutputPort ();
PointSetImporter :: pointer importerB =

PointSetImporter ::New();
importerB ->setFilename("pointsB.vtk");
PointSet :: pointer pointsB =

importerB ->getOutputPort ();

// Run iterative closest point
IterativeClosestPoint :: pointer icp =

IterativeClosestPoint ::New();
icp ->setMovingSet(pointsA);
icp ->setFixedSet(pointsB);

// Render the two point sets
PointRenderer :: pointer renderer =

PointRenderer ::New();
renderer ->addInput(pointsA , Color::Blue(), 10);
renderer ->addInput(pointsB , Color:: Green(), 5);

// Create a window , attach the renderers and start
pipeline

SimpleWindow :: pointer window = SimpleWindow ::New();
window ->addRenderer(renderer);
window ->start();

3.2 Performance

The runtime and memory usage of pipeline A, B, C and

D (see examples 1, 4, 5 and 6) were measured and col-

lected in Table 1. The runtime is the average of 10 runs

on each system. The memory usage is measured us-

ing the system monitor, and includes only the system

memory and not the GPU memory usage. The same

pipelines were implemented and measured in ITK and

VTK for comparison. Several of the ITK and VTK im-

age processing filters used in these pipelines including

smoothing, thresholding, thinning, region growing and

iterative closest point use multi-threading. Three differ-

ent computer systems, all with solid-state drives (SSD),

were used for the measurements:

– Intel i5 3.4 GHz CPU with 16 GB RAM, NVIDIA

Geforce GTX 970 4 GB running Windows 8.1.

– AMD A10 CPU with 16 GB RAM, AMD Radeon

R9 290 GPU 4 GB running Ubuntu 14.04 Linux.

– Intel i5 3.4 GHz CPU with 16 GB RAM, NVIDIA

Geforce GTX 780M 4 GB running Mac OS X 10.9.

The following datasets were used for the different

pipelines, and informed consent was obtained from all

patients for being included in the study:

– Pipeline A: 3D ultrasound image, unsigned 8 bit

integer, 276x249x200 voxels ≈ 14 MB.

– Pipeline B: CT image, signed 16 bit integer, 512x512x426

voxels ≈ 223 MB.

– Pipeline C: 2D image, 565x584 pixels ≈ 11 kB.

10 Erik Smistad et al.

Pipeline Framework System (CPU/GPU/OS) Runtime (ms) Memory usage

Pipeline A FAST Intel/NVIDIA/Windows 86 (0.2, 34, 52, 0.6) 92 MB

Data import, AMD/AMD/Linux 52 (0.2, 23, 29, 0.6) 53 MB

Gaussian smoothing, Intel/NVIDIA/Mac 135 (0.1, 71, 63, 0.5) 34 MB

surface extraction ITK and VTK Intel/NVIDIA/Windows 696 (9, 97, 511, 78) 260 MB

and rendering. AMD/AMD/Linux 1133 (6, 262, 568, 295) 255 MB

Intel/NVIDIA/Mac 704 (29, 68, 441, 165) 140 MB

Pipeline B FAST Intel/NVIDIA/Windows 2293 (230, 1954, 108, 0.7) 398 MB

Data import, AMD/AMD/Linux 2270 (262, 1848, 158, 0.8) 402 MB

region growing, Intel/NVIDIA/Mac 5103 (273, 4588, 242, 0.7) 355 MB

surface extraction ITK and VTK Intel/NVIDIA/Windows 3041 (346, 732, 1673, 290) 1.5 GB

and rendering. AMD/AMD/Linux 4615 (301, 906, 2309, 1099) 1.4 GB

Intel/NVIDIA/Mac 3473 (765, 623, 1616, 467) 1.1 GB

Pipeline C FAST Intel/NVIDIA/Windows 50 (39, 4, 3, 3) 79 MB

Data import, AMD/AMD/Linux 20 (9, 2, 6, 3) 55 MB

thresholding, Intel/NVIDIA/Mac 26 (11, 3, 9, 3) 42 MB

skeletonization ITK and VTK Intel/NVIDIA/Windows 856 (3, 1, 819, 33) 28 MB

and rendering. AMD/AMD/Linux 489 (5, 0.8, 384, 99) 23 MB

Intel/NVIDIA/Mac 721 (10, 0.4, 682, 28) 50 MB

Pipeline D FAST Intel/NVIDIA/Windows 25 (2, 23, 0.2) 80 MB

Data import, AMD/AMD/Linux 21 (4, 17, 0.2) 52 MB

iterative closest point Intel/NVIDIA/Mac 9 (1, 8, 0.2) 16 MB

and rendering. ITK and VTK Intel/NVIDIA/Windows 293 (31, 84, 178) 22 MB

AMD/AMD/Linux 241 (4, 109, 128) 20 MB

Intel/NVIDIA/Mac 152 (6, 61, 85) 14 MB

Table 1 Performance measurements of the four pipelines in examples 1, 4, 5 and 6. The same pipelines were implemented in
ITK and VTK for comparison. Three systems with different operating system and hardware were used. The runtime of each
step in the pipeline is listed in parentheses.

– Pipeline D: Two point set files of the left ventricle

with 386 3D points each of ≈ 31kB.

A – Smoothing and
surface extraction

B – Region growing
and surface extrac-
tion

C – Thresholding
and skeletonization

D – Iterative
closest point

0

500

1000

1500

2000

2500

3000

3500

4000

FAST

ITK+VTK

Runtime (ms)

Fig. 9 Average runtime performance for all computer system
in section 3.2 of the four pipelines in examples 1, 4, 5 and 6
using FAST, ITK and VTK.

4 Discussion

As more medical imaging data becomes available, a

framework that exploits the increasingly heterogeneous

and parallel computers is needed. These heterogeneous
systems are hard to program due to several factors such

as such as driver errors, processor differences, and the

need for low level memory handling. The FAST frame-

work makes medical image processing and visualization

easier by using familiar programming paradigms, and

hiding the details of memory handling from the user,

while still enabling the use of all processors and cores on

a system. Errors and differences in proprietary software

and hardware (e.g. GPU drivers) can not be fixed by

the medical imaging community, as the development of

these are dependent on the manufacturers. FAST aims

to provide a large set of tests and benchmarks to de-

tect and report these problems. This enables an easy

way for a user to check if there are any problems for a

specific setup.

Although ITK has a couple of algorithms that sup-

port OpenCL as an optional extension, we believe that

it is necessary to support heterogeneous processing in

the entire framework to achieve the best performance.

FAST: framework for heterogeneous medical image computing and visualization 11

Data import Processing Rendering
0

100

200

300

400

500

600

700

FAST

ITK+VTK

Runtime (ms)

Data import Processing Rendering
0

500

1000

1500

2000

2500

3000

FAST

ITK+VTK

Runtime (ms)

Data import Processing Rendering
0

100

200

300

400

500

600

700

FAST

ITK+VTK

Runtime (ms)

Data import Processing Rendering
0

20

40

60

80

100

120

140

FAST

ITK+VTK

Runtime (ms)

Pipeline A
Smoothing and surface extraction

Pipeline B
Region growing and surface extraction

Pipeline C
Thresholding and skeletonization

Pipeline D
Iterative closest point

Fig. 10 Detailed average runtime performance for all computer system in section 3.2 of the four pipelines in examples 1, 4, 5
and 6 using FAST, ITK and VTK.

This include all steps in a pipeline from data import,

to processing and visualization. Enabling this kind of

support in ITK, VTK or MeVisLab would most likely

mean rewriting the entire core of these toolkits.

The code examples in the previous section show

how easy it is to set up different pipelines consisting

of data import, streaming, processing and rendering.

Implementation of the same pipelines in ITK and VTK

required more lines of code and code complexity mainly

due to the need for exporting data from ITK to VTK

and templating in ITK. One may argue that this is

because ITK and VTK have more features. However,

we believe that common operations, such as these four

pipelines, should require little code.

The performance measurements in Table 1 and fig-

ures 9 and 10 show that FAST is faster for the four

pipelines with speedups of up to 20 times compared to

ITK and VTK. This speedup is mainly due to the fact

that FAST is able to use the GPU for processing and

rendering, while ITK and VTK rely on multi-threading

for acceleration. All steps in the pipeline, including data

import, processing and rendering, are faster with the

proposed framework, with region growing, 2D thresh-

olding and data import in pipeline C as the only ex-

ceptions. As shown in Fig. 10, the largest difference in

runtime is with rendering, where FAST uses from 0.2

to 3 ms, while VTK uses 28 to 1099 ms.

ITK and VTK use more system memory than FAST

on pipelines A and B which use large 3D images as in-

put with sizes of 14 and 223 MB. However, FAST uses

the GPU for most of this processing and will there-

fore also use more GPU memory. The overall goal is to

significantly reduce the total memory usage in medical

image computing and visualization applications. This

will be done by avoiding data duplications, and keeping

tracking of the CPU and GPU memory used in future

versions of FAST.

For FAST to be accepted by the medical imaging

community, it needs commonly used algorithms to speed

up the development of high-level image processing al-

gorithms. We plan to implement more algorithms in

FAST, and hope that others will contribute to this

open-source framework through the collaboration plat-

form GitHub. Still, developers can use algorithms that

already exist in ITK, as FAST supports interoperability

with ITK pipelines. Documentation and examples are

also vital for the framework’s success. Thus, an online

open-source wiki has been created.

The most important application for high performance

medical image processing and visualization is image

guided surgery, where preoperative data is combined

with intraoperative data which needs to be acquired,

processed and visualized in the operating room. Optical

and electromagnetic tracking are important in this con-

text. Our future work will be on incorporating tracking

in the framework to enable surgical navigation.

The authors strongly believe in open-source code for

medical image computing and visualization as a mean

for advancing the state of the art, as well as open data

for evaluating algorithms. Each year a vast amount of

new methods and modifications of existing ones are pro-

posed (e.g. registration and segmentation algorithms).

In order to increase the amount of methods that are ac-

tually used clinically it’s crucial that new algorithms are

benchmarked thoroughly, both in terms of accuracy and

computational performance. In the last decade, several

challenges have been arranged [6], and open databases

with an established ground truth are probably the best

tool we have today to achieve this. As the proposed

framework becomes more mature the authors hope that

FAST can contribute to this effort and make more al-

gorithms clinically ready faster.

http://github.com/smistad/FAST/wiki/

12 Erik Smistad et al.

5 Conclusion

A novel framework for efficient medical image comput-

ing and visualization has been presented. The frame-

work was built from ground up with optimal perfor-

mance on heterogeneous systems in mind. Code exam-

ples and performance evaluations have demonstrated

that the toolkit is both easy to use, and performs better

than existing frameworks, such as ITK and VTK. Built-

in benchmarking support will make additional fine-tuning

a lot easier, and produce new insight about hetero-

geneous computing in the medical domain. As more

quality and performance benchmarked functionality is

added to the framework, the authors hope that FAST

will be a valid tool for bringing more medical imaging

software into clinical practice in the years to come.

Acknowledgements This project has received funding from
the European Union’s Seventh Framework Programme for re-
search, technological development and demonstration under
grant agreement no 610425. The hardware used in this project
was funded by the MedIm (Norwegian Research School in
Medical Imaging) Travel and Research Grant.

Conflict of interest Erik Smistad, Mohammadmehdi Bozorgi
and Frank Lindseth declare that they have no conflict of in-
terest.

References

1. R. Adams and L. Bischof. Seeded region growing. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
16(6):641–647, June 1994.

2. R. Beare, D. Micevski, C. Share, L. Parkinson, P. Ward,
W. Goscinski, and M. Kuiper. CITK - an architecture
and examples of CUDA enabled ITK filters. pages 1–8,
2011.

3. P. J. Besl and N. D. McKay. A method for registration
of 3-D shapes. IEEE Transactions on pattern analysis and

machine intelligence, 1992.
4. M. Bozorgi and F. Lindseth. GPU-based multi-volume

ray casting within VTK for medical applications. Inter-

national journal of computer assisted radiology and surgery,
May 2014.

5. Catch. C++ Automated Test Cases in Headers. https:

//github.com/philsquared/Catch/ - Last accessed 10. Oct
2014.

6. Consortium for Open Medical Image Computing. Grand
Challenges in Biomedical Image Analysis. http://

grand-challenge.org/ - Last accessed 25. Nov 2014.
7. A. Eklund, P. Dufort, D. Forsberg, and S. M. Laconte.

Medical image processing on the GPU - Past, present
and future. Medical image analysis, 17(8):1073–1094, June
2013.

8. R. C. Gonzalez and R. E. Woods. Digital Image Process-

ing. Pearson Prentice Hall, third edition, 2008.
9. L. Ibanez and W. Schroeder. The ITK Software Guide.

Kitware, 2.4 edition, 2004.
10. Kitware. Insight toolkit (ITK). http://itk.org/ - Last

accessed 18. Aug 2014.

11. Kitware. ITK Release 4 GPU Acceleration. http://www.

itk.org/Wiki/ITK/Release_4/GPU_Acceleration/ - Last
accessed 10. Oct 2014.

12. Kitware. Visualization toolkit (VTK). http://www.vtk.

org/ - Last accessed 18. Aug 2014.
13. M. Koenig, W. Spindler, J. Rexilius, J. Jomier, F. Link,

and H.-O. Peitgen. Embedding VTK and ITK into
a visual programming and rapid prototyping platform.
In Proceedings of SPIE, volume 6141, pages 61412O–
61412O–11, 2006.

14. R. Membarth, F. Hannig, J. Teich, M. Körner, and
W. Eckert. Generating Device-specific GPU code for Lo-
cal Operators in Medical Imaging. In Proceedings of the

26th IEEE International Parallel & Distributed Processing

Symposium (IPDPS), number Section III, 2012.
15. MeVis Medical Solutions AG. MeVisLab. http://www.

mevislab.de - Last accessed 26. Jan 2015.
16. P. Mildenberger, M. Eichelberg, and E. Martin. Intro-

duction to the DICOM standard. European Radiology,
12:920–927, 2002.

17. Neuroimaging Informatics Technology Initiative. NIfTI-
1 Data Format. http://nifti.nimh.nih.gov/ - Last ac-
cessed 26. Jan 2015.

18. NVIDIA Corporation. CUDA. http://developer.nvidia.
com/cuda-zone/ - Last accessed 26. Jan 2015.

19. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone,
and J. Phillips. GPU computing. Proceedings of the IEEE,
96(5):879–899, May 2008.

20. K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov.
Real-time computer vision with OpenCV. Communica-

tions of the ACM, 55(6):61, June 2012.
21. W. Schroeder, K. Martin, and B. Lorensen. Visualiza-

tion Toolkit: An Object-Oriented Approach to 3D Graphics.
Kitware, 4th edition, 2006.

22. E. Smistad, A. C. Elster, and F. Lindseth. Real-time
gradient vector flow on GPUs using OpenCL. Journal of

Real-Time Image Processing, pages 1–8, 2012.
23. E. Smistad, A. C. Elster, and F. Lindseth. Real-Time

Surface Extraction and Visualization of Medical Images
using OpenCL and GPUs. In Norsk informatikkonferanse,
pages 141–152. Akademika forlag, 2012.

24. E. Smistad, A. C. Elster, and F. Lindseth. GPU accel-
erated segmentation and centerline extraction of tubu-
lar structures from medical images. International Journal

of Computer Assisted Radiology and Surgery, 9(4):561–575,
2014.

25. E. Smistad, T. L. Falch, M. Bozorgi, A. C. Elster, and
F. Lindseth. Medical image segmentation on GPUs – A
comprehensive review. Medical Image Analysis, 20(1):1–
18, 2015.

26. E. Smistad and F. Lindseth. A New Tube Detection Fil-
ter for Abdominal Aortic Aneurysms. In Proceedings of

MICCAI 2014 Workshop on Abdominal Imaging: Computa-
tional and Clinical Applications, 2014.

27. E. Smistad and F. Lindseth. Multigrid gradient vector
flow computation on the GPU. 2014.

28. E. Smistad and F. Lindseth. Real-time Tracking of the
Left Ventricle in 3D Ultrasound Using Kalman Filter and
Mean Value Coordinates. In Proceedings MICCAI Chal-
lenge on Echocardiographic Three-Dimensional Ultrasound
Segmentation (CETUS), pages 65–72, Boston, 2014.

29. The Khronos Group. OpenCL. http://www.khronos.org/

opencl/ - Last accessed 26. Jan 2015.

